Volume 22, Issue 1 (2019)                   MJMS 2019, 22(1): 51-61 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salem M, Mirzapour T, Bayrami A, Movahedin M. Differentiation and Apoptosis in Mammalian Germ Cellslls. MJMS. 2019; 22 (1) :51-61
URL: http://journals.modares.ac.ir/article-30-15973-en.html
1- Biology Department, Sciences Faculty, University of Mohaghegh Ardabili, Ardabil, Iran
2- Biology Department, Sciences Faculty, University of Guilan, Rasht, Iran , dr.tooba72@gmail.com
3- Anatomical Science Department, Medical Science Faculty, Tarbiat Modrres University, Tehran, Iran
Abstract:   (642 Views)
Primordial germ cells (PGCs) are the specialized cells that are created from epiblast cells and after the migration differentiate into spermatogonial cells. Also, Spermatogonial cells differentiate into spermatids during the spermatogenesis process. Created disorders in each of these stages cause infertility, so the recognizing of the mechanism of these cells from the early stages of formation to the differentiation and investigating the effective factors in differentiation can be useful in the treatment of the infertile people. Today, the cultivation of spermatogonial cells and transplantation of these cells can be effective in the investigation of spermatogonial stem cell and the treatment of infertility. In this paper, the formation and migration of primordial germ cells, the spermatogenesis process and the effective factors in differentiation of spermatogonial stem cells are investigated.
Full-Text [PDF 478 kb]   (204 Downloads)    
Article Type: Review |
Received: 2018/01/31 | Accepted: 2018/06/4 | Published: 2019/03/11

References
1. Dadoune JP. New insights into male gametogenesis: What about the spermatogonial stem cell niche?. Folia Histochemica et Cytobiologica. 2007;45(3):141-7. [Link]
2. Russell LD. Morphological and functional evidence for Sertoli-germ cell relationships. Sertoli Cell. 1993. [Link]
3. Russell LD, Ren HP, Sinha Hikim I, Schulze W, Sinha Hikim AP. A comparative study in twelve mammalian species of volume densities, volumes, and numerical densities of selected testis components, emphasizing those related to the Sertoli cell. Am J Anat. 1990;188(1):21-30 [Link] [DOI:10.1002/aja.1001880104]
4. Weber JE, Russell LD, Wong V, Peterson RN. Three‐dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli–Sertoli and Sertoli–germ‐cell relationships. Developmental Dynamics. 1983;167(2):163-79. [Link]
5. Grootegoed JA, Siep M, Baarends WM. Molecular and cellular mechanisms in spermatogenesis. Baillieres Best Pract Res Clin Endocrinol Metab. 2000;14(3):331-43. [Link] [DOI:10.1053/beem.2000.0083]
6. Nagano M, Avarbock MR, Leonida EB, Brinster CJ, Brinster RL. Culture of mouse spermatogonial stem cells. Tissue Cell. 1998;30(4):389-97. [Link] [DOI:10.1016/S0040-8166(98)80053-0]
7. De Rooij DG, Grootegoed JA. Spermatogonial stem cells. Curr Opin Cell Biol. 1998;10(6):694-701. [Link] [DOI:10.1016/S0955-0674(98)80109-9]
8. Lawson KA, Ray Dunn N, Roelen BAJ, Zeinstra LM, Davis AM, Wright CVE, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 1999;13(4):424-36. [Link] [DOI:10.1101/gad.13.4.424]
9. Tam PP, Zhou SX. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol. 1996;178(1):124-32. [Link] [DOI:10.1006/dbio.1996.0203]
10. Surani MA, Ancelin K, Hajkova P, Lange UC, Payer B, Western P, et al. Mechanism of mouse germ cell specification: A genetic program regulating epigenetic reprogramming. Cold Spring Harb Symp Quant Biol. 2004;69:1-9. [Link] [DOI:10.1101/sqb.2004.69.1]
11. Ewen KA, Koopman P. Mouse germ cell development: From specification to sex determination. Mol Cell Endocrinol. 2010;323(1):76-93. [Link] [DOI:10.1016/j.mce.2009.12.013]
12. Jan SZ, Hamer G, Repping S, De Rooij DG, Van Pelt AM, Vormer TL. Molecular control of rodent spermatogenesis. Biochimica et Biophysica Acta. 2012;1822(12):1838-50. [Link] [DOI:10.1016/j.bbadis.2012.02.008]
13. Lawson KA, Hage WJ. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp. 1994;182:68-84. [Link]
14. Mintz B, Russell ES. Gene‐induced embryological modifications of primordial germ cells in the mouse. J Exp Zool. 1957;134(2):207-37. [Link] [DOI:10.1002/jez.1401340202]
15. Orr-Urtreger A, Avivi A, Zimmer Y, Givol D, Yarden Y, Lonai P. Developmental expression of c-kit, a proto-oncogene encoded by the W locus. Development. 1990;109(4):911-23. [Link]
16. Baker M. Stem cells from testis [Internet]. London: Nature Reports Stem Cells. 2007 [cited 2014 May 15]. Available from: https://www.nature.com/stemcells/2007/0710/071004/full/stemcells.2007.97.html [Link]
17. De Rooij DG. Proliferation and differentiation of spermatogonial stem cells. Reproduction. 2001;121(3):347-54. [Link] [DOI:10.1530/rep.0.1210347]
18. Sugimoto R, Nabeshima Y, Yoshida S. Retinoic acid metabolism links the periodical differentiation of germ cells with the cycle of Sertoli cells in mouse seminiferous epithelium. Mech Dev. 2012;128(11-12):610-24. [Link] [DOI:10.1016/j.mod.2011.12.003]
19. Huckins C. The spermatogonial stem cell population in adult rats. Cell Prolif. 1971;4(4):313-34. [Link] [DOI:10.1111/j.1365-2184.1971.tb01543.x]
20. Creemers LB, Meng X, Den Ouden K, Van Pelt AM, Izadyar F, Santoro M, et al. Transplantation of germ cells from glial cell line-derived neurotrophic factor-overexpressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation. Biol reprod. 2002;66(6):1579-84. [Link] [DOI:10.1095/biolreprod66.6.1579]
21. Weinbauer GF, Luetjens CM, Simoni M, Nieschlag E. Physiology of testicular function. In: Nieschlag E, Behre HM, Nieschlag S, editors. Andrology: Male reproductive health and dysfunction. Berlin: Springer Science & Business Media; 2010. pp. 11-59. [Link] [DOI:10.1007/978-3-540-78355-8_2]
22. Koruji M. Autograft of fresh and freezed spermatogonial cells of adult mouse after coculture with Sertoli cells and treatment with GDNF, SCF and GM-CSF cytokines to the azoospermic mice with gamma-ray [Dissertation]. Tehran: Tarbiat Modares University; 2007. [Persian] [Link]
23. Mohammadi SM, Movahedin M, Koruji SM. A comparison between the colony formation of adult mouse spermatogonial stem cells in co cultures with sertoli and STO (mouse embryonic fibroblast cell line). Yakhteh Med J. 2010;12(2):231-40. [Persian] [Link]
24. Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A, et al. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod. 2005;72(4):985-91. [Link] [DOI:10.1095/biolreprod.104.036400]
25. Mirzapour A, Beheshty MH, Vafayan M. The response of sandwich panels with rigid polyurethane foam cores under flexural loading. Iran polym j. 2005;14(12):1082-8. [Link]
26. Buageaw A, Sukhwani M, Ben-Yehudah A, Ehmcke J, Rawe VY, Pholpramool C, et al. GDNF family receptor alpha1 phenotype of spermatogonial stem cells in immature mouse testes. Biol Reprod. 2005;73(5):1011-6 [Link] [DOI:10.1095/biolreprod.105.043810]
27. Baazm M, Mashayekhi FJ, Babaie S, Bayat P, Beyer C, Zendedel A. Effects of different Sertoli cell types on the maintenance of adult spermatogonial stem cells in vitro. In Vitro Cell Dev Biol-Anim. 2017 Sep 1;53(8):752-8. [Link] [DOI:10.1007/s11626-017-0172-z]
28. Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y. Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech Dev. 2002;113(1):29-39. [Link] [DOI:10.1016/S0925-4773(02)00004-7]
29. De Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998 Dec;396(6710):474-7. [Link] [DOI:10.1038/24884]
30. Ryu BY, Kubota H, Avarbock MR, Brinster RL. Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci U S A. 2005;102(40):14302-7. [Link] [DOI:10.1073/pnas.0506970102]
31. Tokuda M, Kadokawa Y, Kurahashi H, Marunouchi T. CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biol Reprod. 2007;76(1):130-41. [Link] [DOI:10.1095/biolreprod.106.053181]
32. Oatley JM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem. 2007;282(35):25842-51. [Link] [DOI:10.1074/jbc.M703474200]
33. Wang M, Guo Y, Wang M, Zhou T, Xue Y, Du G, et al. The Glial Cell-Derived Neurotrophic Factor (GDNF)-responsive phosphoprotein landscape identifies raptor phosphorylation required for spermatogonial progenitor cell proliferation. Mol Cell Proteomics. 2017;16(6):982-97. [Link] [DOI:10.1074/mcp.M116.065797]
34. Itman C, Loveland KL. SMAD expression in the testis: An insight into BMP regulation of spermatogenesis. Dev Dyn. 2008;237(1):97-111. [Link] [DOI:10.1002/dvdy.21401]
35. Zhao GQ, Deng K, Labosky PA, Liaw L, Hogan BL. The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev. 1996;10(13):1657-69. [Link] [DOI:10.1101/gad.10.13.1657]
36. Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol. 2000;14(7):1053-63. [Link] [DOI:10.1210/mend.14.7.0479]
37. Shimasaki S, Moore RK, Otsuka F, Erickson GF. The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 2004;25(1):72-101. [Link] [DOI:10.1210/er.2003-0007]
38. Hajian Monfared M, Minaee B, Rastegar T, Khrazinejad E, Barbarestani M. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells. Iran J Basic Med Sci. 2016;19(11):1186-92. [Link]
39. Eslahi N, Hadjighassem MR, Joghataei MT, Mirzapour T, Bakhtiyari M, Shakeri M, et al. The effects of poly L-lactic acid nanofiber scaffold on mouse spermatogonial stem cell culture. Int J Nanomedicine. 2013;8:4563-76. [Link]
40. Hu Q, Ueno N, Behringer RR. Restriction of BMP4 activity domains in the developing neural tube of the mouse embryo. EMBO rep. 2004;5(7):734-9. [Link] [DOI:10.1038/sj.embor.7400184]
41. Han IS, Sylvester SR, Kim KH, Schelling ME, Venkateswaran S, Blanckaert VD, et al. Basic fibroblast growth factor is a testicular germ cell product which may regulate Sertoli cell function. Mol Endocrinol. 1993;7(7):889-97. https://doi.org/10.1210/mend.7.7.8413313 [Link] [DOI:10.1210/me.7.7.889]
42. Huang J, Mohammadi M, Rodrigues GA, Schlessinger J. Reduced activation of RAF-1 and MAP kinase by a fibroblast growth factor receptor mutant deficient in stimulation of phosphatidylinositol hydrolysis. J Biol Chem. 1995;270(10):5065-72. [Link] [DOI:10.1074/jbc.270.10.5065]
43. Feng LX, Ravindranath N, Dym M. Stem cell factor/c-kit up-regulates cyclin D3 and promotes cell cycle progression via the phosphoinositide 3-kinase/p70 S6 kinase pathway in spermatogonia. J Biol Chem. 2000;275(33):25572-6. [Link] [DOI:10.1074/jbc.M002218200]
44. Mirzapour T, Movahedin M, Tengku Ibrahim TA, Koruji M, Haron AW, Nowroozi MR, et al. Effects of basic fibroblast growth factor and leukaemia inhibitory factor on proliferation and short-term culture of human spermatogonial stem cells. Andrologia. 2012;44 Suppl 1:41-55. [Link] [DOI:10.1111/j.1439-0272.2010.01135.x]
45. Wang M, Zhang C, Huang C, Cheng S, He N, Wang Y, Ahmed MF, Zhao R, Jin J, Zuo Q, Zhang Y. Regulation of fibroblast growth factor 8 (FGF8) in chicken embryonic stem cells differentiation into spermatogonial stem cells. J Cell Biochem. 2018 Feb;119(2):2396-407. [Link] [DOI:10.1002/jcb.26402]
46. Ajeen AR, Movahedin M, Rezazadeh Valojerdi M, Kazemnejad A. The effects of rFSH and testosterone on in vitro maturation of mouse round spermatid in co-culture with vero cells. J Reprod Infertil. 2003;4(4):295-305. [Persian] [Link]
47. Haywood M, Spaliviero J, Jimemez M, King NJ, Handelsman DJ, Allan CM. Sertoli and germ cell development in hypogonadal (hpg) mice expressing transgenic follicle-stimulating hormone alone or in combination with testosterone. Endocrinology. 2003;144(2):509-17. [Link] [DOI:10.1210/en.2002-220710]
48. Tapanainen P, Knip M. Evaluation of growth hormone secretion and treatment. Ann Med. 1992;24(4):237-47. [Link] [DOI:10.3109/07853899209149951]
49. Verhoeven G, Cailleau J. Follicle-stimulating hormone and androgens increase the concentration of the androgen receptor in Sertoli cells. Endocrinology. 1988;122(4):1541-50. [Link] [DOI:10.1210/endo-122-4-1541]
50. Thanaboonyawat I, Makemaharn O, Petyim S, Laokirkkiat P, Choavaratana R. The correlation of cumulus mucification patterns with oocyte maturation rate in vitro in FSH+ LH-primed IVM cycles: a prospective study. Arch Gynecol Obstet. 2016;293(3):681-6. [Link] [DOI:10.1007/s00404-015-3935-3]
51. Nasr Esfahani MH, Tavalaee M, Deemeh MR. Origins and evaluation of DNA damage in infertile individual. J Iran Anat Sci. 2008;6(24):489-500. [Persian] [Link]
52. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997;88(3):347-54. [Link] [DOI:10.1016/S0092-8674(00)81873-5]
53. Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther. 2001;92(1):57-70. [Link] [DOI:10.1016/S0163-7258(01)00159-0]
54. Shaha C, Tripathi R, Mishra DP. Male germ cell apoptosis: Regulation and biology. Philos Trans R Soc Lond B Biol Sci. 2010;365(1546):1501-15. [Link] [DOI:10.1098/rstb.2009.0124]
55. Recasens V, Rubio-Martinez A, Lucia J, Giralt M, Solano V. Implementation of haemovigilance system focusing in donors collection. Hematol J. 2006;91(s1):204. [Link]
56. White MK, Cinti C. A morphologic approach to detect apoptosis based on electron microscopy. In: Giordano A, Romano G, editors. Cell cycle control and dysregulation protocols, methods in molecular biology™. 285th Volume. New York City: Humana Press; 2004. pp. 105-11. [Link] [DOI:10.1385/1-59259-822-6:105]
57. Charriaut-Marlangue C, Ben-Ari Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport. 1995;7(1):61-4. [Link] [DOI:10.1097/00001756-199512000-00014]
58. Hatori M, Klatte KJ, Teixeira CC, Shapiro IM. End labeling studies of fragmented DNA in the avian growth plate: Evidence of apoptosis in terminally differentiated chondrocytes. J Bone Miner Res. 1995;10(12):1960-8. [Link] [DOI:10.1002/jbmr.5650101216]
59. Köhler C, Orrenius S, Zhivotovsky B. Evaluation of caspase activity in apoptotic cells. J Immunol Methods. 2002;265(1-2):97-110. [Link] [DOI:10.1016/S0022-1759(02)00073-X]
60. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. 1999;144(2):281-92. [Link] [DOI:10.1083/jcb.144.2.281]
61. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003;22(56):9030-40. [Link] [DOI:10.1038/sj.onc.1207116]
62. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3(6):673-82. [Link] [DOI:10.1016/1074-7613(95)90057-8]
63. Sjöström J, Bergh J. How apoptosis is regulated, and what goes wrong in cancer. BMJ. 2001;322(7301):1538-9. [Link] [DOI:10.1136/bmj.322.7301.1538]
64. Williams GT, Smith CA. Molecular regulation of apoptosis: Genetic controls on cell death. Cell. 1993;74(5):777-9. [Link] [DOI:10.1016/0092-8674(93)90457-2]
65. Grataroli R, Vindrieux D, Selva J, Felsenheld C, Ruffion A, Decaussin M, et al. Characterization of tumour necrosis factor-alpha-related apoptosis-inducing ligand and its receptors in the adult human testis. Mol Hum Reprod. 2004;10(2):123-8. [Link] [DOI:10.1093/molehr/gah016]
66. Ross AJ, Waymire KG, Moss JE, Parlow AF, Skinner MK, Russell LD, et al. Testicular degeneration in Bclw-deficient mice. Nat Genet. 1998;18(3):251-6. [Link] [DOI:10.1038/ng0398-251]
67. Petre‐Lazar B, Livera G, Moreno SG, Trautmann E, Duquenne C, Hanoux V, Habert R, Coffigny H. The role of p63 in germ cell apoptosis in the developing testis. J cell physiol. 2007;210(1):87-98. [Link] [DOI:10.1002/jcp.20829]
68. Fujimoto K, Yamamoto T, Kitano T, Abé S. Promotion of cathepsin L activity in newt spermatogonial apoptosis induced by prolactin. FEBS Lett. 2002;521(1-3):43-6. [Link] [DOI:10.1016/S0014-5793(02)02817-X]
69. Pesce M, Farrace MG, Piacentini M, Dolci S, De Felici M. Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development. 1993;118(4):1089-94. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author