Volume 22, Issue 1 (2019)                   MJMS 2019, 22(1): 21-25 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Emruzi Z, Babaheidarian P, Ahangari G. Effect of hypercholesterolemia on the distribution of peripheral T lymphocyte activation markers. MJMS. 2019; 22 (1) :21-25
URL: http://journals.modares.ac.ir/article-30-28631-en.html
1- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
2- Clinical Pathology Department, Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran
3- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran , ghah@nigeb.ac.ir
Abstract:   (447 Views)
Aims: The correlation between high levels of blood lipid with the induction of some diseases indicates significant effects of hyperlipidemia and especially on the immune system, inflammatory response, and secretion of cytokines. This is due to changes in the composition of cholesterol in the cell membrane and macrophage cytoplasm, which disrupts the signaling pathway necessary for the innate immune response. The purpose of this study was to investigate the effect of on phenotype properties of T cells and the expression of its associated activation markers.
Materials & Methods: In the present experimental study 3ml of peripheral blood samples were collected from 30 patients and 30 healthy subjects. The distribution of activation markers was evaluated by Immunophenotyping with anti-CD4, CD8, CD25, and CD69 antibodies. was used and output data were analyzed using Flow Jo 10 and SPSS 16 software.
Findings: Evaluation of the activation markers located T cells of patients with showed a significant decline by 0.8% and 2% in the expression of CD25 marker and 1.92% and 2.12% in the expression of CD69 marker on CD8+ CD4+ T cells, respectively (p<0.05).
Conclusion: The changes in the phenotype properties of T cells and the decreased expression of activation markers in high-level cholesterol conditions might weaken the immune system in hyperlipidemia patients.
Full-Text [PDF 613 kb]   (160 Downloads)    

Received: 2018/01/30 | Accepted: 2018/05/15 | Published: 2019/03/11

References
1. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106(25):3143-421. [Link] [DOI:10.1161/circ.106.25.3143]
2. Shamshiev AT, Ampenberger F, Ernst B, Rohrer L, Marsland BJ, Kopf M. Dyslipidemia inhibits Toll-like receptor-induced activation of CD8alpha-negative dendritic cells and protective Th1 type immunity. J Exp Med. 2007;204(2):441-52. [Link] [DOI:10.1084/jem.20061737]
3. Parrott MD, Greenwood CE. Dietary influences on cognitive function with aging: From high-fat diets to healthful eating. Ann N Y Acad Sci. 2007;1114:389-97. [Link] [DOI:10.1196/annals.1396.028]
4. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Dietary fatty acid intakes and the risk of ovulatory infertility. Am J Clin Nutr. 2007;85(1):231-7. [Link] [DOI:10.1093/ajcn/85.1.231]
5. Missmer SA, Chavarro JE, Malspeis S, Bertone-Johnson ER, Hornstein MD, Spiegelman D, et al. A prospective study of dietary fat consumption and endometriosis risk. Hum Reprod. 2010;25(6):1528-35. [Link] [DOI:10.1093/humrep/deq044]
6. Schwarz S, Leweling H. Multiple sclerosis and nutrition. Mult Scler. 2005;11(1):24-32. [Link] [DOI:10.1191/1352458505ms1119oa]
7. Willett WC, Mac Mahon B. Diet and cancer - an overview. N Engl J Med. 1984;310:697-703. [Link] [DOI:10.1056/NEJM198403153101106]
8. Hiatt RA, Friedman GD, Bawol RD, Ury HK. Breast cancer and serum cholesterol. J Natl Cancer Inst. 1982;68(6):885-9. [Link]
9. Gaziano JM, Hennekens CH. Dietary fat and risk of prostate cancer. J Nat Cancer Inst. 1995;87(19):1427-8. [Link] [DOI:10.1093/jnci/87.19.1427]
10. Lei L, Li H, Yan F, Xiao Y. Hyperlipidemia impaired innate immune response to periodontal pathogen Porphyromonas gingivalis in apolipoprotein E knockout mice. PLoS One. 2013;8(8):e71849. [Link] [DOI:10.1371/journal.pone.0071849]
11. Dansky HM, Charlton SA, Mc Gee Harper M, Smith JD. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A. 1997;94(9):4642-6. [Link] [DOI:10.1073/pnas.94.9.4642]
12. Zhou X, Paulsson G, Stemme S, Hansson GK. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest. 1998;101(8):1717-25. [Link] [DOI:10.1172/JCI1216]
13. Robertson AK, Zhou X, Strandvik B, Hansson GK. Severe hypercholesterolaemia leads to strong Th2 responses to an exogenous antigen. Scand J Immunol. 2004;59(3):285-93. [Link] [DOI:10.1111/j.0300-9475.2004.01403.x]
14. Zhou X, Johnston TP, Johansson D, Parini P, Funa K, Svensson J, et al. Hypercholesterolemia leads to elevated TGF-beta1 activity and T helper 3-dependent autoimmune responses in atherosclerotic mice. Atherosclerosis. 2009;204(2):381-7. [Link] [DOI:10.1016/j.atherosclerosis.2008.10.017]
15. Cambiaggi C, Scupoli MT, Cestari T, Gerosa F, Carra G, Tridente G, et al. Constitutive expression of CD69 in interspecies T-cell hybrids and locus assignment to human chromosome 12. Immunogenetics. 1992;36(2):117-20. [Link] [DOI:10.1007/BF00215288]
16. López-Cabrera M, Santis AG, Fernández-Ruiz E, Blacher R, Esch F, Sánchez-Mateos P, et al. Molecular cloning, expression, and chromosomal localization of the human earliest lymphocyte activation antigen AIM/CD69, a new member of the C-type animal lectin superfamily of signal-transmitting receptors. J Exp Med. 1993;178(2):537-47. [Link] [DOI:10.1084/jem.178.2.537]
17. Reddy M, Eirikis E, Davis C, Davis HM, Prabhakar U. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: An in vitro model to monitor cellular immune function. J Immunol Methods. 2004;293(1-2):127-42. [Link] [DOI:10.1016/j.jim.2004.07.006]
18. Jackson AL, Matsumoto H, Janszen M, Maino V, Blidy A, Shye S. Restricted expression of p55 interleukin 2 receptor (CD25) on normal T cells. Clin Immunol Immunopathol. 1990;54(1):126-33. [Link] [DOI:10.1016/0090-1229(90)90012-F]
19. Hosono M, De Boer OJ, Van Der Wal AC, Van Der Loos CM, Teeling P, Piek JJ, et al. Increased expression of T cell activation markers (CD25, CD26, CD40L and CD69) in atherectomy specimens of patients with unstable angina and acute myocardial infarction. Atherosclerosis. 2003;168(1):73-80. [Link] [DOI:10.1016/S0021-9150(03)00024-8]
20. Poulton TA, Gallagher A, Potts RC, Beck JS. Changes in activation markers and cell membrane receptors on human peripheral blood T lymphocytes during cell cycle progression after PHA stimulation. Immunology. 1988;64(3):419-25. [Link]
21. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111-7. [Link] [DOI:10.1172/JCI57132]
22. Emanuela F, Grazia M, Marco De R, Maria Paola L, Giorgio F, Marco B. Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab. 2012;2012:476380. [Link] [DOI:10.1155/2012/476380]
23. Vonk AG, De Bont N, Netea MG, Demacker PN, Van Der Meer JW, Stalenhoef AF, et al. Apolipoprotein-E-deficient mice exhibit an increased susceptibility to disseminated candidiasis. Med Mycol. 2004;42(4):341-8. [Link] [DOI:10.1080/13693780410001657135]
24. Roselaar SE, Daugherty A. Apolipoprotein E-deficient mice have impaired innate immune responses to Listeria monocytogenes in vivo. J Lipid Res. 1998;39(9):1740-3. [Link]
25. Ludewig B, Jäggi M, Dumrese T, Brduscha-Riem K, Odermatt B, Hengartner H, et al. Hypercholesterolemia exacerbates virus-induced immunopathologic liver disease via suppression of antiviral cytotoxic T cell responses. J Immunol. 2001;166(5):3369-76. [Link] [DOI:10.4049/jimmunol.166.5.3369]
26. Lee Y, Kim J, An J, Lee S, Lee H, Kong H, et al. Restoration of declined immune responses and hyperlipidemia by Rubus occidenalis in Diet-induced obese mice. Biomol Ther (Seoul). 2017;25(2):140-8. [Link] [DOI:10.4062/biomolther.2016.052]
27. Mailer RKW, Gisterå A, Polyzos KA, Ketelhuth DFJ, Hansson GK. Hypercholesterolemia enhances T cell receptor signaling and increases the regulatory T cell population. Sci Rep. 2017;7:15655. [Link] [DOI:10.1038/s41598-017-15546-8]
28. Mailer RKW, Gisterå A, Polyzos KA, Ketelhuth DFJ, Hansson GK. Hypercholesterolemia induces differentiation of regulatory T cells in the liver. Circ Res. 2017;120(11):1740-53. [Link] [DOI:10.1161/CIRCRESAHA.116.310054]
29. Bajnok A, Ivanova M, Rigó Jr J, Toldi G. the distribution of activation markers and selectins on peripheral t lymphocytes in preeclampsia. Mediat Inflamm. 2017;2017:8045161. [Link] [DOI:10.1155/2017/8045161]
30. Kraakman MJ, Dragoljevic D, Kammoun HL, Murphy AJ. Is the risk of cardiovascular disease altered with anti‐inflammatory therapies? insights from rheumatoid arthritis. Clin Transl Immunology. 2016;5(5):e84. [Link] [DOI:10.1038/cti.2016.31]
31. Rouquette-Jazdanian AK, Pelassy C, Breittmayer JP, Aussel C. Revaluation of the role of cholesterol in stabilizing rafts implicated in T cell receptor signaling. Cell Signal. 2006;18(1):105-22. [Link] [DOI:10.1016/j.cellsig.2005.03.024]
32. Swamy M, Beck-Garcia K, Beck-Garcia E, Hartl FA, Morath A, Yousefi OS, et al. A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity. 2016;44(5):1091-101. [Link] [DOI:10.1016/j.immuni.2016.04.011]
33. Molnár E, Swamy M, Holzer M, Beck-García K, Worch R, Thiele C, et al. Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering. J Biol Chem. 2012;287(51):42664-74. [Link] [DOI:10.1074/jbc.M112.386045]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author