Volume 23, Issue 1 (2020)                   mjms 2020, 23(1): 41-48 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jahazi S, Yaghoubi H. Increasing the Efficiency of Gene Transfer in E. coli Using Cationic Carbon Nanotubes. mjms 2020; 23 (1) :41-48
URL: http://mjms.modares.ac.ir/article-30-35505-en.html
1- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
2- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran , yaghoubi_h@iauardabil.ac.ir
Abstract:   (1837 Views)
Amis: In recent years, carbon nanotubes have attracted the attention of many researchers because of their unique properties. In the present study, carbon nanotubes were coated using PEI. Then, their ability to gene delivery to E. coli cells was examined.
Materials & Methods: Nanotube- PEI nanoparticles were synthesized by the reaction between amine groups of PEI and carboxyl groups of nanotubes. In order to prepare the appropriate DNA vector for delivering to E. coli cells, the Gus A gene was transferred from pBI121 to PUC18 vector (pUC-Gus). Nanotube-PEI/DNA complexes were prepared by combining different mass ratios of nanotube-PEI (0.5, 1, and 2 w/w%) with the fixed amount of DNA. To the transformation of E. coli, the appropriate amount of nanotube-PEI/DNA complexes was added to E. coli cells under stirring at 37°C for 7h. The transformation efficiency of E. coli was determined by colony counting on LB agar supplemented with Ampicillin. Moreover, Gus staining assay was used to confirm the function of the plasmid. Determination of cytotoxicity of nanotube-PEI was performed using MTT assay at 6, 24, and 72 hours intervals at different concentrations of nanotube-PEI (10, 100, and 500μg/ml).
Findings: The nanotube-PEI was synthesized successfully. Nanotube- PEI nanoparticles have a great ability to protect DNA from enzymatic digestion. The percentage of E. coli cells viability was decreased by increasing both the concentration of nanotube-PEI nanoparticles and also the duration of incubation. The results of the agarose gel electrophoresis of plasmid extracted from E. coli and digested using EcoRI enzyme showed that the pUC-Gus plasmid has been successfully transfected by nanotube-PEI nanoparticles to E. coli bacterial cells.
Conclusion: Cationic carbon nanotubes have a high ability to gene transfer to E. coli.
Full-Text [PDF 684 kb]   (957 Downloads)    
Article Type: Original Research | Subject: Biochemistry
Received: 2019/08/7 | Accepted: 2020/06/2

References
1. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev. 2006;106(3):1105-36. [Link] [DOI:10.1021/cr050569o]
2. O'Callaghan D, Charbit A. High efficiency transformation of Salmonella typhimurium and Salmonella typhi by electroporation. Mol Gen Genet MGG. 1990;223(1):156-8. [Link] [DOI:10.1007/BF00315809]
3. Thompson JR, Register E, Curotto J, Kurtz M, Kelly R. An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast. 1998;14(6):565-71. https://doi.org/10.1002/(SICI)1097-0061(19980430)14:6<565::AID-YEA251>3.0.CO;2-B [Link] [DOI:10.1002/(SICI)1097-0061(19980430)14:63.0.CO;2-B]
4. Nabel EG, Plautz G, Nabel GJ. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science. 1990;249(4974):1285-8. [Link] [DOI:10.1126/science.2119055]
5. Hiromichi M, Asako I, Chiaki M, Masato I, Yasuyuki Y. Gene transfer into intact plant cells by electroinjection through cell walls and membranes. Gene. 1986;41(1):121-4. [Link] [DOI:10.1016/0378-1119(86)90274-X]
6. Kwak SY, Lew TT, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol. 2019;14(5):447-55. [Link] [DOI:10.1038/s41565-019-0375-4]
7. Ohta T, Hashida Y, Yamashita F, Hashida M. Development of novel drug and gene delivery carriers composed of single-walled carbon nanotubes and designed peptides with PEGylation. J Pharm Sci. 2016;105(9):2815-24. [Link] [DOI:10.1016/j.xphs.2016.03.031]
8. Karimi M, Solati N, Ghasemi A, Estiar MA, Hashemkhani M, Kiani P, et al. Carbon nanotubes part II: A remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv. 2015;12(7):1089-105. [Link] [DOI:10.1517/17425247.2015.1004309]
9. Guo Ch, Al-Jamal WT, Toma FM, Bianco A, Prato M, Al-Jamal KT, et al. Design of cationic multiwalled carbon nanotubes as efficient siRNA vectors for lung cancer xenograft eradication. Bioconjugate Chem. 2015;26(7):1370-9. [Link] [DOI:10.1021/acs.bioconjchem.5b00249]
10. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, et al. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009;9(3):1007-10. [Link] [DOI:10.1021/nl803083u]
11. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941-51. [Link] [DOI:10.1038/nbt.3330]
12. Razak SI, Sharif NF, Muhamad II. Polyaniline-coated halloysite nanotubes: Effect of para-hydroxybenzene sulfonic acid doping. Compos Interfaces. 2014;21(8):715-22. [Link] [DOI:10.1080/15685543.2014.932551]
13. Amani A, Zare N, Asadi A, Asghari Zakaria R. Ultrasound-enhanced gene delivery to alfalfa cells by hPAMAM dendrimer nanoparticles. Turk J Biol. 2018;42(1):63-75. [Link] [DOI:10.3906/biy-1706-6]
14. Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angewandte Chemie. 2004;116(39):5354-8. [Link] [DOI:10.1002/ange.200460437]
15. Wattiaux R, Laurent N, Wattiaux-De Coninck S, Jadot M. Endosomes, lysosomes: Their implication in gene transfer. Adv Drug Deliv Rev. 2000;41(2):201-8. [Link] [DOI:10.1016/S0169-409X(99)00066-6]
16. Ogris M, Brunner S, Schüller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: Reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999;6(4):595-605. [Link] [DOI:10.1038/sj.gt.3300900]
17. He Q, Gao Y, Zhang L, Zhang Z, Gao F, Ji X, et al. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials. 2011;32(30):7711-20. [Link] [DOI:10.1016/j.biomaterials.2011.06.066]
18. Wang M, Liu H, Li L, Cheng Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat Commun. 2014;5(1):3053. [Link] [DOI:10.1038/ncomms4053]
19. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev. 2005;57(15):2215-37. [Link] [DOI:10.1016/j.addr.2005.09.019]
20. Lv H, Zhang Sh, Wang B, Cui Sh, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Controll Release. 2006;114(1):100-9. [Link] [DOI:10.1016/j.jconrel.2006.04.014]
21. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329-47. [Link] [DOI:10.1016/S0169-409X(02)00228-4]
22. Lim G, Lum D, Ng B, Sam Ch. Differential transformation efficiencies observed for pUC19 and pBR322 in E. coli may be related to calcium chloride concentration. J Exp Microbiol Immunol. 2015;20:1-6. [Link]
23. Tu Z, He G, Li KX, Chen MJ, Chang J, Chen L, et al. An improved system for competent cell preparation and high efficiency plasmid transformation using different Escherichia coli strains. Electron J Biotechnol. 2005;8(1):113-20. [Link] [DOI:10.2225/vol8-issue1-fulltext-8]
24. Tan H, Fu L, Seno M. Optimization of bacterial plasmid transformation using nanomaterials based on the Yoshida effect. Int J Mol Sci. 2010;11(12):4962-72. [Link] [DOI:10.3390/ijms11124962]
25. Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, et al. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano. 2011;5(1):493-9. [Link] [DOI:10.1021/nn102344t]
26. Serag MF, Kaji N, Habuchi S, Bianco A, Baba Y. Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers. RSC Adv. 2013;3(15):4856-62. [Link] [DOI:10.1039/c2ra22766e]
27. Zintchenko A, Philipp A, Dehshahri A, Wagner E. Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjugate Chem. 2008;19(7):1448-55. [Link] [DOI:10.1021/bc800065f]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.