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ABSTRACT 

Myelination refers to the formation of the myelin sheath around axons to 

guarantee rapid action potential conduction and provide trophic support to 

axons. It is a highly orchestrated process, which occurs in a regulated and 

stepwise manner. During development, oligodendrocytes progenitor cells 

(OPCs) proliferate and migrate to the different areas of the central nervous 

system (CNS). These cells then differentiate to mature oligodendrocytes, 

which extend their process toward axons and wrap around them. Many studies 

have examined the intracellular signaling pathways underlying the 

myelination process. PI3K/Akt pathway is one of the critical regulators of the 

oligodendrocyte maturation and CNS myelination. The mammalian target of 

rapamycin (mTOR) is the main downstream target of the PI3K/Akt pathway 

and its role in oligodendrocyte differentiation and developmental myelination 

has been previously identified. Here we summarized the current knowledge 

of the mTOR signaling pathway during developmental myelination and 

possible applications in remyelination. Details of the intracellular signaling 

mechanisms that regulate myelination might provide insight into 

pharmacological approaches to manipulate this process to enhance 

therapeutic approaches toward remyelination in demyelinating disorders. 
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INTRODUCTION 

Myelin is an insulating layer that surrounds axons 

of the central nervous system (CNS), which 

allows rapid conduction of the electrical impulse, 

and provides metabolic support to axons (1). 

Developmental myelination is an exceedingly 

coordinated process, which happens in a stepwise 

manner. This process consists of oligodendrocyte 

progenitor cells (OPCs) proliferation and 

migration to the desired distinction. This process 

is followed by OPCs differentiation into mature 

oligodendrocytes, extending their process toward 

axons, interacting with axons they wish to wrap, 

and then compacting (2).  

The fundamental importance of myelin is 

highlighted in disorders with the pathological loss 

of myelin such as multiple sclerosis (MS). The 

pathological hallmark of MS is focal 

demyelinated lesions, which fail to remyelinate 

completely (3). Remyelination is a spontaneous 

process in which progenitor cells migrate to the 

site of demyelination, differentiate into mature 

cells, and then wrap around demyelinated axons. 

Many steps occurring during developmental 

myelination are believed to be recapitulated 

during myelin repair (4). 
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Identifying the details of the signaling 

mechanisms that regulate the oligodendrocyte 

development and CNS myelination provides 

insight for developing new therapies for disease 

in which failure of OPCs differentiation within a 

demyelinated lesion diminish myelin repair. 

Many studies have examined the intracellular 

signaling pathways underlying the myelination 

process. Some evidence has identified the 

PI3K/Akt pathway as the critical regulator of 

oligodendrocyte maturation and CNS myelination 

(5-7). The mammalian target of rapamycin 

(mTOR) is the main downstream target of 

PI3K/Akt pathway and its role in oligodendrocyte 

differentiation and developmental myelination 

has been well-established (8-10). 

Here we aim to discuss the current knowledge 

of mTOR signaling pathway during myelination. 

Given that myelin development mechanisms 

might also function during remyelination, 

understanding pathways/molecules involved in 

oligodendrocytes derived myelination may have 

important implications for understanding 

remyelination in the adult nervous system.  

The role of mTOR pathway in OPCs 

differentiation 

mTOR signaling pathway has a vital role in many 

CNS physiological functions. mTOR activity 

regulates cell metabolism, growth, proliferation, 

and survival by regulating gene transcription and 

protein synthesis (11, 12). The role of the mTOR 

signaling pathway in the developmental 

myelination of zebrafish is well established. 

Pharmacological inhibition of mTOR reduces 

OPC morphological complexity in zebrafish 

embryos (13). Owning to similarities between 

oligodendrocytes structure and function of 

zebrafish and mammals, they are known as a 

valuable model to study vertebrate myelination in 

vivo (14). The downstream signaling of mTOR 

seems to be complex. A recent study revealed that 

mTOR promotes early oligodendrocyte 

differentiation by suppressing the bone 

morphogenetic protein pathway (BMP) in OPC 

(15). Furthermore, inhibition of mTOR pathway 

in OPCs leads to impairment in the initiation and 

extension of myelination and reduced 

morphological complexity and the number of 

mature oligodendrocytes (16). In contrast, 

increasing the activity of Akt/mTOR pathway by 

genetically deleting its inhibitor leads to increased 

myelin production (5, 17). Furthermore, depletion 

of mTOR in patients with neonatal white matter 

dysplasia (NWMD) leads to a decrease in OPCs 

proliferation and differentiation during 

embryonic and early postnatal stages (18). 

One downstream effect of mTOR pathway is 

regulating oligodendrocyte cytoskeletal 

organization and major myelin protein expression 

(Figure 1) (9). During differentiation, OPCs 

undergo extensive morphological changes. 

Several new processes are formed in which 

dynamics of the actin cytoskeleton are required 

Figure 1. Schematic illustration of mTOR role during developmental myelination. mTOR pathway regulates 

oligodendrocytes differentiation by suppressing BMP and regulating oligodendrocytes cytoskeleton proteins. mTOR also has 

a role in myelination initiation and wrapping through regulating MBP localization. 
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for this process. The polymerizing force of F-

actin is found to push out the leading edge of the 

growing process whereas actin filament 

depolymerization promotes myelin wrapping (19, 

20). It has been shown that actin-regulating 

proteins including profilin, ARPC2/3 complex 

and cofilin, are involved in OPCs morphological 

differentiation (21). Little evidence on mTOR 

downstream cytoskeletal targets is available, but 

given its role in regulating cytoskeletal dynamics 

during morphological changes of 

oligodendrocytes, Musah et al. showed that 

mTOR regulates cytoskeletal proteins involved in 

actin assembly and disassembly. Inhibition of 

mTOR by rapamycin reduced the level of 

profilin2 and increased the active form of cofilin 

that are respectively involved in the assembly and 

disassembly of cytoskeletal actin in 

differentiating OPCs in vitro (13). The ArpC3 is 

previously found to be an important subunit of the 

ARP2/3 complex that is necessary for actin 

nucleation and branching (22). Moreover, the 

impairment in process extension and initiation of 

myelination is identified in  ArpC3 knockout mice 

(20). Furthermore, the expression of ArpC3 

which is involved in actin nucleation and 

branching, decreased following mTOR inhibition, 

which leads to a decrease in morphological 

complexity (13). Taken together, mTOR 

signaling pathway seems to regulate actin 

polymerization/depolymerization proteins and 

promotes cellular branching complexity. 

Further investigation using mTOR cKO mice 

confirmed the fundamental importance of mTOR 

on myelination. mTOR signaling was previously 

found to have a distinct effect on myelination in 

different regions of the CNS. For instance, mTOR 

deletion leads to hypomyelination of spinal cord 

and cerebellum, while does not affect brain and 

optic nerve (16, 23, 24). Moreover, the effect of 

mTOR signaling on myelination of dorsal and 

ventral regions of the spinal cord is different. 

mTOR knockout leads to decrease in the number 

of profilin2+ and ArpC3+ mature 

oligodendrocytes in the ventral white matter 

(VWM) of the spinal cord but not in the dorsal 

white matter (DWM) (13), which provides 

evidence for the distinct and less severe effect of 

the mTOR signaling pathway on differentiation in 

DWM region. Therefore, further investigations 

are required to determine whether actin dynamics 

is regulated by regionally heterogeneous 

mechanisms in the VWM and DWM. 

Furthermore, the compensatory signaling 

pathways and other regulating proteins and 

promoting factors remain to be investigated.   

The recovery from the differentiation deficit is 

also reported in mTOR cKO mice (13), which 

suggests that this signaling pathway has more 

complex interactions with other signaling 

pathways. Some studies provide evidence for the 

coordinated role of ERK and mTOR signaling 

during OPCs differentiation and suggest that 

Erk1/2 and mTOR signaling sequentially regulate 

distinct stages of OPC differentiation. Therefore, 

these two pathways are likely to compensate for 

each other (9, 25). Furthermore, junction 

mediating and regulatory protein, Jmy, is an actin 

polymerization regulator because of its intrinsic 

activity of nucleating actin monomers (26). 

Therefore, it may likely be that other cytoskeletal 

regulators compensate morphological 

differentiation deficit. Furthermore, mTOR KO 

led to a delay in the initiation of myelination that 

could be due to either impairment in 

differentiation or direct effect of mTOR on the 

initiation of myelination (13). 

The role of mTOR pathway in myelin 

wrapping 

Once myelination is initiated, F-actin disassembly 

is important in the switch from myelination 

initiation to myelin wrapping (27). Myelin basic 

protein (MBP) is one of the major myelin proteins 

involved in these processes. Some evidence 

suggests that MBP competes with actin 

depolymerization factor, cofilin/gelsolin, for 

binding to phosphatidyl inositol 4, 5 bisphosphate 

(PIP2) in the membrane of oligodendrocyte. This 

competition leads to releasing of actin 

disassembly factors followed by 

depolymerization of F-actin and myelin wrapping 

(20). Recently, it is shown that MBP mRNA and 

protein expression are impaired in mTOR cKO 

mice. Moreover, the in vitro results indicated that 

there is an accumulation of MBP in the cell body 

and proximal process suggesting a deficit in 

proper MBP mRNA localization into the 

extended process. Furthermore, the expression of 

kinesin family member 1B (kif1B), the protein 
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involved in MBP transport to the process (28), 

decreased in mature oligodendrocytes (13). 

Depletion of mTOR in oligodendrocytes leads to 

the expression of forkhead box O3 (FoxO3), 

which finally repress the expression of MBP (18). 

mTOR pathway in remyelination 

It is believed that common signaling pathways are 

involved in both developmental myelination and 

remyelination (29). Considering the prominent 

role of mTOR pathway in initial myelination, 

various studies have investigated this pathway in 

endogenous remyelination following induction of 

demyelination conditions (30). The cuprizone-

induced demyelination model is widely used for 

myelin repair studies (31, 32).  Ursolic acid which 

is able to sustain the activity of induced mTORC1 

(33), enhances myelin repair following cuprizone 

demyelination, even after long term (12 weeks) 

cuprizone administration in mice (31). Feeding 

animals with cuprizone for 6 weeks leads to 

demyelination, which is followed by efficient 

remyelination, whereas 12 weeks of cuprizone 

feeding leads to extensive demyelination with 

insufficient remyelination, mostly due to 

exhaustion of OPCs (34, 35). This may imply for 

the possibility of mTOR pathway targeting to 

recue exhausted OPCs in progressive phase of 

MS. Since in the mid-term cuprizone feeding, 

remyelination occurs in a short time after 

cuprizone cessation, only acceleration of 

remyelination could be evaluated in this model 

(36). In recent years, an mTOR inhibitor, 

rapamycin, was used in combination with 

cuprizone to induce more complete 

demyelination. Using rapamycin during 

cuprizone feeding provides approximately 

complete demyelination at week 6 which is 

followed by a longer demyelination course, 

making it suitable to evaluate the mechanisms 

initiating remyelination (37). 

The role of mTOR pathway in other 

myelination processes 

Intermediate molecules in mTOR signaling and 

the role of this pathway in other myelination 

processes such as OPC migration is not well 

understood. Even though there is evidence that 

mTOR function is not essential for OPC 

migration (38), the activity of Arp2/3 complex, 

which is one of the downstream goals of mTOR 

pathway, has already been identified in OPC 

migration (39). Since the first stage of 

remyelination requires the recruitment of OPCs, 

investigating the pathways/molecules involved in 

the migration of OPCs during CNS development 

is of great importance to improve remyelination 

in pathological condition. 

CONCLUSION AND FUTURE 

PERSPECTIVE 

mTOR has a regulatory role in both initiation of 

myelination and axonal wrapping through 

regulating actin binding proteins and MBP 

localization, respectively. Given that 

developmental myelination, mechanisms might 

also function during remyelination, 

understanding pathways/molecules involved in 

oligodendrocytes-derived myelination may have 

important implications for understanding 

remyelination in the adult nervous system. Details 

of the intracellular signaling mechanisms that 

regulate myelination might provide insight into 

pharmacological approaches to manipulate this 

process to enhance therapeutic approaches toward 

remyelination in demyelinating disorders. 

However, the challenge now is to extend this 

knowledge to reveal the molecular mechanisms 

required for OPCs differentiation and axonal 

myelination at the proper developmental time. 

Such insight will be necessary for designing novel 

therapeutic approaches to enhance remyelination 

in pathological conditions such as multiple 

sclerosis. 
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