Volume 22, Issue 1 (2018)                   mjms 2018, 22(1): 27-34 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kalhori M, Irani S, Soleimani M, Arefian E, Kouhkan F. Effect of miR-579 overexpression on the BAX and CDKN1A genes in the Glioblastoma cell line. mjms 2018; 22 (1) :27-34
URL: http://mjms.modares.ac.ir/article-30-16349-en.html
1- Biology Department, Science & Research Branch, Islamic Azad University, Tehran, Iran
2- Hematology Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran , soleim_m@modares.ac.ir
3- Microbiology Department, Biology Faculty, College of Science, University of Tehran, Tehran, Iran
4- Molecular Biology & Genetic Engineering Department, Stem Cell Technology Research Center, Tehran, Iran
Abstract:   (8211 Views)
Aims: Glioblastoma multiforme is a type of brain cancers that do not respond well to treatment. The poor prognosis of this disease is due to the presence of radiation resistance and chemotherapy. The purpose of the present study was to produce miR-579 precursor carriers and investigate the effect of increased expression of miR-579 on the expression of BAX and CDKN1A genes in the glioblastoma cell line.
Materials and Methods: In this experimental study, in order to produce recombinant lentiviral vectors, a gene containing the miR-579 precursor sequence was cloned into the plasmid. The recombinant structure was transmitted to the cells of HEK293T with and pMD2 plasmids. Viral particles were concentrated using Ultra Centrifuge. Viral titration was calculated by flow cytometry. The viral particles produced were transferred to the A-172 cell line. Finally, by using Real-Time PCR, changes in expression levels of miR-579 and BAX and CDKN1A genes were investigated.
Findings: The presence of miR-579 gene precursor in the plasmid was confirmed by colony PCR and sequencing methods. The study showed that the level of miR-579 expression in infected cells with the recombinant virus was found to be up-regulated compared to the control group. miR-579 increased the BAX gene expression by three times. But, there was no significant change in the expression of CDKN1A gene expression.
Conclusion: Increased expression of miR-579 in the A-172 cell line could increase the expression of BAX gene. However, the CDKN1A gene expression does not change significantly.
 
Full-Text [PDF 611 kb]   (2224 Downloads)    
Article Type: Original Manuscipt | Subject: Biochemistry
Received: 2018/02/13 | Accepted: 2018/03/6

References
1. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170(5):1445-53. [Link] [DOI:10.2353/ajpath.2007.070011]
2. Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64(6):479-89. [Link] [DOI:10.1093/jnen/64.6.479]
3. Henriksen M, Johnsen KB, Andersen HH, Pilgaard L, Duroux M. MicroRNA expression signatures determine prognosis and survival in glioblastoma multiforme - a systematic overview. Mol Neurobiol. 2014;50(3):896-913. [Link] [DOI:10.1007/s12035-014-8668-y]
4. Wang Y, Wang X, Zhang J, Sun G, Luo H, Kang C, et al. MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas. J Neurooncol. 2012;106(2):217-24. [Link] [DOI:10.1007/s11060-011-0679-1]
5. Kaddar T, Rouault JP, Chien WW, Chebel A, Gadoux M, Salles G, et al. Two new miR-16 targets: Caprin-1 and HMGA1, proteins implicated in cell proliferation. Biol Cell. 2009;101(9):511-24. [Link] [DOI:10.1042/BC20080213]
6. Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: Discovery, function and future perspectives. Cell Death Differ. 2010;17(2):215-20. [Link] [DOI:10.1038/cdd.2009.69]
7. Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334(4):1351-8. [Link] [DOI:10.1016/j.bbrc.2005.07.030]
8. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65(14):6029-33. [Link] [DOI:10.1158/0008-5472.CAN-05-0137]
9. Møller HG, Rasmussen AP, Andersen HH, Johnsen KB, Henriksen M, Duroux M. A systematic review of microRNA in glioblastoma multiforme: Micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol. 2013;47(1):131-44. [Link] [DOI:10.1007/s12035-012-8349-7]
10. Mueller AK, Lindner K, Hummel R, Haier J, Watson DI, Hussey DJ. MicroRNAs and their impact on radiotherapy for cancer. Radiat Res. 2016;185(6):668-77. [Link] [DOI:10.1667/RR14370.1]
11. Fattore L, Mancini R, Acunzo M, Romano G, Laganà A, Pisanu ME, et al. miR-579-3p controls melanoma progression and resistance to target therapy. Proc Natl Acad Sci U S A. 2016;113(34):E5005-13. [Link] [DOI:10.1073/pnas.1607753113]
12. Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016;42:63-71. [Link] [DOI:10.1016/j.dnarep.2016.04.008]
13. Tan C, Dlugosz PJ, Peng J, Zhang Z, Lapolla SM, Plafker SM, et al. Auto-activation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2. J Biol Chem. 2006;281(21):14764-75. [Link] [DOI:10.1074/jbc.M602374200]
14. Pawlowski J, Kraft AS. Bax-induced apoptotic cell death. Proc Natl Acad Sci U S A. 2000;97(2):529-31. [Link] [DOI:10.1073/pnas.97.2.529]
15. Abbas T, Dutta A. p21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer. 2009;9(6):400-14. [Link] [DOI:10.1038/nrc2657]
16. Wu T, Li Y, Liu B, Zhang S, Wu L, Zhu X, et al. Expression of Ferritin light chain (FTL) is elevated in Glioblastoma, and FTL silencing inhibits glioblastoma cell proliferation via the GADD45/JNK pathway. PLoS One. 2016;11(2):e0149361. [Link] [DOI:10.1371/journal.pone.0149361]
17. Yu XF, Zou J, Bao ZJ, Dong J. miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World J Gastroenterol. 2011;17(42):4711-7. [Link] [DOI:10.3748/wjg.v17.i42.4711]
18. Skalsky RL, Cullen BR. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene. PLoS One. 2011;6(9):e24248. [Link] [DOI:10.1371/journal.pone.0024248]
19. Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, et al. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med. 2016;5(8):1917-46. [Link] [DOI:10.1002/cam4.775]
20. Haffty BG, Glazer PM. Molecular markers in clinical radiation oncology. Oncogene 2003;22(37):5915-25. [Link] [DOI:10.1038/sj.onc.1206704]
21. Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, et al. Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol. 1999;9(3):469-79. [Link] [DOI:10.1111/j.1750-3639.1999.tb00536.x]
22. Scherr M, Battmer K, Ganser A, Eder M. Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA. Cell Cycle. 2003;2(3):251-7. [Link] [DOI:10.4161/cc.2.3.376]
23. Zhang HH, Pang M, Dong W, Xin JX, Li YJ, Zhang ZC, et al. miR-511 induces the apoptosis of radioresistant lung adenocarcinoma cells by triggering BAX. Oncol Rep. 2014;31(3):1473-9. [Link] [DOI:10.3892/or.2014.2973]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.