Volume 21, Issue 1 (2018)                   mjms 2018, 21(1): 41-63 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jonidi Shariatzadeh F, Gheydari K, Solouk A, Bonakdar S. Use of Stem Cells in Cartilage Tissue Regeneration and Engineering: A Review. mjms 2018; 21 (1) :41-63
URL: http://mjms.modares.ac.ir/article-30-22505-en.html
1- Biomateials Department, Biomedcial Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
2- National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (9724 Views)
Introduction: Cartilage is a tissue without vessel and lymph in body. If it has a massive defect, it cannot regenerate and reconstruct itself. In this society, cartilage diseases such as osteoarthritis and cartilage defects have increased. Its defects can disrupt the daily function of the patient and can be accompanied by pain due to bone wear. Common methods used to treat cartilage defects, which are considered invasive with low efficacy, include autologous chondrocytes, microfracture, bone marrow stimulation, and debridement. Current treatments are not definitive methods, which is why the use of stem cells and cartilage tissue engineering has been turned on. In the current review, the types of stem cells used in cartilage therapy and cartilage tissue engineering were investigated. Then, cellular signaling factors such as growth factors, mechanical and environmental factors were mentioned and referred to scaffolds based on the biomaterials used to engineer high-efficiency stem cells for the reconstruction of cartilage tissue. Therefore, the aim of this study was to review the use of stem cells in cartilage tissue regeneration and engineering.
Conclusion: The role of stem cells in regeneration of cartilage has been properly proven, but the mechanism and method of creating this regeneration has not yet been determined. Mesenchymal cells have the highest safety in cell therapy in cartilage, and these types of cells have the most clinical usage. In Iran, cell therapy is performed clinically for patients, but cartilage tissue engineering has not yet reached the clinical stage.
Full-Text [PDF 804 kb]   (4549 Downloads)    
Article Type: Analytic Review | Subject: Sport physiology
Received: 2018/06/27 | Accepted: 2018/06/27

References
1. Simon TM, Jackson DW. Articular cartilage: Injury pathways and treatment options. Sports Med Arthrosc ‎Rev. 2006;14(3):146-54.‎ [Link]
2. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for ‎articular cartilage. Nat Rev Rheumatol. 2015;11(1):21-34.‎ [Link]
3. Pham PV. Stem cells in clinical applications: Bone and cartilage regeneration. Switzerland: Springer; 2017.‎ [Link]
4. Askari F, Solouk A, Shafieian M, Seifalian AM. Stem cells for tissue engineered vascular bypass grafts. Artif ‎Cells Nanomed Biotechnol. 2017;45(5):999-1010.‎ [Link]
5. Orth P, Rey-Rico A, Venkatesan JK, Madry H, Cucchiarini M. Current perspectives in stem cell research for ‎knee cartilage repair. Stem Cells Cloning. 2014;7:1-17.‎ [Link]
6. Wang M, Yuan Z, Ma N, Hao C, Guo W, Zou G, et al. Advances and prospects in stem cells for cartilage ‎regeneration. Stem Cells Int. 2017;2017:4130607.‎ [Link]
7. Panahi-Joo Y, Solouk A. Cell therapy for the treatment of spinal cord injury with focus on stem cells: A ‎review. J Appl Tissue Eng. 2015;2(1):1-22. ‎ [Link]
8. Toh WS, Cao T. Derivation of chondrogenic cells from human embryonic stem cells for cartilage tissue ‎engineering. Methods Mol Biol. 2014; 1341:263-79.‎ [Link]
9. Kawaguchi J, Mee PJ, Smith AG. Osteogenic and chondrogenic differentiation of embryonic stem cells in ‎response to specific growth factors. Bone. 2005;36(5):758-69.‎ [Link] [DOI:10.1016/j.bone.2004.07.019]
10. Rodriguez-Fontan F, Piuzzi NS, Chahla J, Payne KA, LaPrade RF, Muschler GF, et al. Stem and progenitor ‎cells for cartilage repair: Source, safety, evidence, and efficacy. Oper Tech Sport Med. 2017;25(1):25-33.‎ [Link]
11. Li S, L'Heureux N, Elisseeff JH. Stem cell and tissue engineering. singapore: World Scientific; 2011. pp. ‎‎211-30. ‎ [Link]
12. Bagher Z, Azami M, Ebrahimi-Barough S, Mirzadeh H, Solouk A, Soleimani M, et al. Differentiation of ‎wharton's jelly-derived mesenchymal stem cells into motor neuron-like cells on three-dimensional collagen-‎grafted nanofibers. Mol Neurobiol. 2016;53(4):2397-408.‎ [Link]
13. Mak J, Jablonski CL, Leonard CA, Dunn JF, Raharjo E, Matyas JR, et al. Intra-articular injection of synovial ‎mesenchymal stem cells improves cartilage repair in a mouse injury model. Sci Rep. 2016;6(23076):1-12.‎ [Link]
14. Mui-os-López E, Hermida-Gómez T, Fuentes-Boquete I, de Toro-Santos J, Blanco FJ, Díaz-Prado SM. ‎Human amniotic mesenchymal stromal cells as favorable source for cartilage repair. Tissue Eng Part A. ‎‎2017;23(17-18):901-12.‎ [Link]
15. Uth K, Trifonov D. Stem cell application for osteoarthritis in the knee joint: A minireview. World J Stem ‎Cells. 2014;6(5):629-36.‎ [Link]
16. de Windt TS, Vonk LA, Slaper-Cortenbach IC, van den Broek MP, Nizak R, van Rijen MH, et al. Allogeneic ‎mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in ‎humans upon mixture with recycled autologous chondrons. Stem Cells. 2017;35(1):256-64.‎ [Link]
17. Perdisa F, Marcacci M. Induced pluripotent stem cells in cartilage repair improved mr scoring system for ‎outcome analysis of cartilage repair procedures. Med Sci. 2015;43(2016):53-73. ‎ [Link]
18. Li Y, Liu T, Van Halm-Lutterodt N, Chen J, Su Q, Hai Y. Reprogramming of blood cells into induced ‎pluripotent stem cells as a new cell source for cartilage repair. Stem Cell Res Ther. 2016;7:31.‎ [Link] [DOI:10.1186/s13287-016-0290-7]
19. Lietman SA. Induced pluripotent stem cells in cartilage repair. World J Orthop. 2016;7(3):149-55.‎ [Link] [DOI:10.5312/wjo.v7.i3.149]
20. Harrison RH, St-Pierre JP, Stevens MM. Tissue engineering and regenerative medicine: A year in review. ‎Tissue Eng Part B Rev. 2014;20(1):1-16.‎ [Link] [DOI:10.1089/ten.teb.2013.0668]
21. Guzzo RM, O'Sullivan MB. Human pluripotent stem cells: Advances in chondrogenic differentiation and ‎articular cartilage regeneration. Curr Mol Biol Rep. 2016;2(3):113-22.‎ [Link] [DOI:10.1007/s40610-016-0041-7]
22. Majumdar MK, Wang E, Morris EA. BMP-2 and BMP-9 promotes chondrogenic differentiation of human ‎multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol. ‎‎2001;189(3):275-84.‎ [Link] [DOI:10.1002/jcp.10025]
23. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical ‎interactions with the extracellular matrix. Cell Stem Cell. 2009;5(1):17-26.‎ [Link] [DOI:10.1016/j.stem.2009.06.016]
24. Karkhaneh A, Naghizadeh Z, Shokrgozar MA, Bonakdar S, Solouk A, Haghighipour N. Effects of ‎hydrostatic pressure on biosynthetic activity during chondrogenic differentiation of MSCs in hybrid scaffolds. ‎Int J Artif Organs. 2014;37(2):142-8.‎ [Link] [DOI:10.5301/ijao.5000288]
25. Zhu M, Feng Q, Sun Y, Li G, Bian L. Effect of cartilaginous matrix components on the chondrogenesis and ‎hypertrophy of mesenchymal stem cells in hyaluronic acid hydrogels. J Biomed Mater Res B Appl Biomater. ‎‎2017;105(8):2292-300.‎ [Link] [DOI:10.1002/jbm.b.33760]
26. Mashinchian O, Turner LA, Dalby MJ, Laurent S, Shokrgozar MA, Bonakdar S, et al. Regulation of stem cell ‎fate by nanomaterial substrates. Nanomedicine (Lond). 2015;10(5):829-47.‎ [Link]
27. Koga H, Engebretsen L, Brinchmann JE, Muneta T, Sekiya I. Mesenchymal stem cell-based therapy for ‎cartilage repair: A review. Knee Surg Sports Traumatol Arthrosc. 2009;17(11):1289-97.‎ [Link] [DOI:10.1007/s00167-009-0782-4]
28. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from ‎bone marrow: Differentiation-dependent gene expression of matrix components. Exp Cell Res. ‎‎2001;268(2):189-200.‎ [Link] [DOI:10.1006/excr.2001.5278]
29. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF. Chondrogenic differentiation of ‎cultured human mesenchymal stem cells from marrow. Tissue Eng. 1998;4(4):415-28‎ [Link] [DOI:10.1089/ten.1998.4.415]
30. Im GI, Jung NH, Tae SK. Chondrogenic differentiation of mesenchymal stem cells isolated from patients in ‎late adulthood: The optimal conditions of growth factors. Tissue Eng. 2006;12(3):527-36.‎ [Link] [DOI:10.1089/ten.2006.12.527]
31. Crecente-Campo J, Borrajo E, Vidal A, Garcia-Fuentes M. New scaffolds encapsulating TGF-β3/BMP-7 ‎combinations driving strong chondrogenic differentiation. Eur J Pharm Biopharm. 2017;114:69-78.‎ [Link] [DOI:10.1016/j.ejpb.2016.12.021]
32. Tang C, Jin C, Xu Y, Wei B, Wang L. Chondrogenic differentiation could be induced by autologous bone ‎marrow mesenchymal stem cell-derived extracellular matrix scaffolds without exogenous growth factor. ‎Tissue Eng Part A. 2016;22(3-4):222-32.‎ [Link] [DOI:10.1089/ten.tea.2014.0491]
33. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived ‎adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials. 2004;25(16):3211-22.‎ [Link] [DOI:10.1016/j.biomaterials.2003.10.045]
34. Mirzaei S, Karkhaneh A, Soleimani M, Ardeshirylajimi A, Seyyed Zonouzi H, Hanaee-Ahvaz H. Enhanced ‎chondrogenic differentiation of stem cells using an optimized electrospun nanofibrous PLLA/PEG scaffolds ‎loaded with glucosamine. J Biomed Mater Res A. 2017;105(9):2461-74.‎ [Link] [DOI:10.1002/jbm.a.36104]
35. Pfeifer CG, Berner A, Koch M, Krutsch W, Kujat R, Angele P, et al. Higher ratios of hyaluronic acid ‎enhance chondrogenic differentiation of human MSCs in a hyaluronic acid-gelatin composite scaffold. ‎Materials (Basel). 2016;9(5):381.‎ [Link]
36. Tamaddon M, Burrows M, Ferreira SA, Dazzi F, Apperley JF, Bradshaw A, et al. Monomeric, porous type II ‎collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in ‎vitro. Sci Rep. 2017;7:43519.‎ [Link]
37. Dzobo K, Turnley T, Wishart A, Rowe A, Kallmeyer K, van Vollenstee FA, et al. Fibroblast-derived ‎extracellular matrix induces chondrogenic differentiation in human adipose-derived mesenchymal ‎stromal/stem cells in vitro. Int J Mol Sci. 2016;17(8):E1259.‎ [Link]
38. Naeimi M, Rafienia M, Fathi M, Janmaleki M, Bonakdar S, Ebrahimian-Hosseinabadi M. Incorporation of ‎chitosan nanoparticles into silk fibroin-based porous scaffolds: Chondrogenic differentiation of stem cells. Int ‎J Polym Mate Polym Biomater. 2016;65(4):202-9. ‎ [Link]
39. Holmes B, Fang X, Zarate A, Keidar M, Zhang LG. Enhanced human bone marrow mesenchymal stem cell ‎chondrogenic differentiation in electrospun constructs with carbon nanomaterials. Carbon. 2016;97:1-13.‎ [Link] [DOI:10.1016/j.carbon.2014.12.035]
40. Hosseinkazemi H, Biazar E, Bonakdar S, Ebadi MT, Shokrgozar MA, Rabiee M. Modification of PCL ‎electrospun nanofibrous mat with Calendula officinalis extract for improved interaction with cells. Int J Polym ‎Mate Polym Biomater. 2015;64(9):459-64.‎ [Link]
41. Moradi L, Vasei M, Dehghan MM, Majidi M, Farzad Mohajeri S, Bonakdar S. Regeneration of meniscus ‎tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: In vivo study. ‎Biomaterials. 2017;126:18-30.‎ [Link] [DOI:10.1016/j.biomaterials.2017.02.022]
42. Chiang ER, Ma HL, Wang JP, Liu CL, Chen TH, Hung SC. Allogeneic mesenchymal stem cells in ‎combination with hyaluronic acid for the treatment of osteoarthritis in rabbits. PLoS One. ‎‎2016;11(2):e0149835.‎ [Link] [DOI:10.1371/journal.pone.0149835]
43. Burnsed OA, Schwartz Z, Marchand KO, Hyzy SL, Olivares-Navarrete R, Boyan BD. Hydrogels derived ‎from cartilage matrices promote induction of human mesenchymal stem cell chondrogenic differentiation. ‎Acta Biomater. 2016;43:139-49.‎ [Link] [DOI:10.1016/j.actbio.2016.07.034]
44. Bulte JW, Kraitchman DL, Mackay AM, Pittenger MF. Chondrogenic differentiation of mesenchymal stem ‎cells is inhibited after magnetic labeling with ferumoxides. Blood. 2004;104(10):3410-2.‎ [Link] [DOI:10.1182/blood-2004-06-2117]
45. Khader A, Sherman LS, Rameshwar P, Arinzeh TL. Sodium tungstate for promoting mesenchymal stem ‎cell chondrogenesis. Stem Cells Dev. 2016;25(24):1909-18.‎ [Link] [DOI:10.1089/scd.2016.0158]
46. Portocarrero Huang G, Menezes R, Vincent R, Hammond W, Rizio L, Collins G, et al. Gelatin scaffolds ‎containing partially sulfated cellulose promote mesenchymal stem cell chondrogenesis. Tissue Eng Part A. ‎‎2017;23(17-18):1011-21.‎ [Link]
47. Seol YJ, Park JY, Jeong W, Kim TH, Kim SY, Cho DW. Development of hybrid scaffolds using ceramic and ‎hydrogel for articular cartilage tissue regeneration. J Biomed Mater Res A. 2015;103(4):1404-13.‎ [Link] [DOI:10.1002/jbm.a.35276]
48. Diduch DR, Jordan LC, Mierisch CM, Balian G. Marrow stromal cells embedded in alginate for repair of ‎osteochondral defects. Arthroscopy. 2000;16(6):571-7.‎ [Link] [DOI:10.1053/jars.2000.4827]
49. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, et al. Novel injectable neutral ‎solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21(21):2155-61.‎ [Link]
50. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue ‎engineering: A review. Biomaterials. 2000;21(24):2589-98.‎ [Link] [DOI:10.1016/S0142-9612(00)00126-5]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.