Volume 21, Issue 2 (2018)                   mjms 2018, 21(2): 107-111 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nourahan ‎ M, Mehrabi A, Baheiraei N. Electroconductive Scaffolds: A New Strategy in Cardiac Tissue ‎Engineering. mjms 2018; 21 (2) :107-111
URL: http://mjms.modares.ac.ir/article-30-7949-en.html
1- Biomedical Engineering Department, Engineering Faculty, Yazd Branch, Islamic Azad University, Yazd, ‎Iran
2- Anatomical Science Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
3- Anatomical Science Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran , n.baheiraei@modares.ac.ir
Abstract:   (7697 Views)
Introduction: Myocardium tissue is an electroactive tissue capable of transferring electrical signals, which lead to synchronized beating of heart. Electrical impulses originate from sinoatrial node and spread though myocardium to induce mechanical contraction of cardiomyocytes. As the leading cause of death, worldwide, cardiovascular diseases are often accompanied by disruption of electrical integrity of cardiac tissue and arrhythmia. In many arrhythmias, lack of conduction as well as unidirectional conduction result in insufficient intercellular electrical coupling at gap junctions. Due to limitation of conventional treatment methods such as heart transplantation, pathological and therapeutic researches in cardiac electrical disorders have increased in last few years. The aim of this study was to review the last studies in electrical system of heart and its disorder along with the results and the future of the cardiovascular tissue therapy method based on Conductive biomaterial.
Conclusion: Electrical integrity is essential for normal functioning of the heart. Among the new methods of treating heart failure and improving the electrical integrity of the disorder caused by these defects, tissue engineering with the use of conductive electrical conductive materials has been widely considered along with other methods. Three main types of conductive materials have been used for tissue engineering application: (1) Gold-based materials (2) Carbon-based materials (3) Conductive polymers.
Full-Text [PDF 486 kb]   (4421 Downloads)    
Article Type: Review | Subject: Biochemistry
Received: 2017/09/27 | Accepted: 2017/11/29

References
1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive Summary: Heart ‎disease and stroke statistics--2016 update: A report from the American heart association. Circulation. ‎‎2016;133(4):447-54.‎ [Link]
2. Darvishi H. Iran is the world's highest death record [Internet]. Tehran: Salamat News; 2005 [2017 Sep ‎‎29; cited 2017 Dec]. Available from: https://goo.gl/ZWTWTQ. [persian]‎ [Link]
3. Kléber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol ‎Rev. 2004;84(2):431-88.‎ [Link]
4. Lip GY, Heinzel FR, Gaita F, Juanatey JR, Le Heuzey JY, Potpara T, et al. European Heart Rhythm ‎Association/Heart Failure Association joint consensus document on arrhythmias in heart failure, endorsed by ‎the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society. Eur J Heart Fail. 2015;17(9):848-74.‎ [Link]
5. Monteiro LM, Vasques-Nóvoa F, Ferreira L, Pinto-do-Ó P, Nascimento DS. Restoring heart function and ‎electrical integrity: Closing the circuit. NPJ Regen Med. 2017;2(9):1-13.‎ [Link]
6. Vunjak Novakovic G, Eschenhagen T, Mummery C. Myocardial tissue engineering: In vitro models. Cold ‎Spring Harb Perspect Med. 2014;4(3):a014076.‎ [Link]
7. Venugopal JR, Prabhakaran MP, Mukherjee S, Ravichandran R, Dan K, Ramakrishna S. Biomaterial ‎strategies for alleviation of myocardial infarction. J R Soc Interface. 2012;9(66):1-19.‎ [Link]
8. Shimada T, Kawazato H, Yasuda A, Ono N, Sueda K. Cytoarchitecture and intercalated disks of the working ‎myocardium and the conduction system in the mammalian heart. Anat Rec A Discov Mol Cell Evol Biol. ‎‎2004;280(2):940-51.‎ [Link]
9. Blank AC, van Veen TA, Jonsson MK, Zelen JS, Strengers JL, de Boer TP, et al. Rewiring the heart: Stem cell ‎therapy to restore normal cardiac excitability and conduction. Curr Stem Cell Res Ther. 2009;4(1):23-33.‎ [Link]
10. Lakshmanan R, Krishnan UM, Sethuraman S. Living cardiac patch: The elixir for cardiac regeneration. ‎Expert Opin Biol Ther. 2012;12(12):1623-40.‎ [Link] [DOI:10.1517/14712598.2012.721770]
11. Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F. Synthesis, characterization and antioxidant ‎activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. ‎Mater Sci Eng C. 2014;44:24-37.‎ [Link] [DOI:10.1016/j.msec.2014.07.061]
12. Naseri S, Diba M, Golkar S, Boccaccini AR, Klupp Taylor RN. Fabrication of gold-‎nanoshell/polycaprolactonecomposite films with high electrical conductivity. Mater Lett. 2014;130:164-7.‎ [Link] [DOI:10.1016/j.matlet.2014.05.067]
13. Hsiao CW, Bai MY, Chang Y, Chung MF, Lee TY, Wu CT, et al. Electrical coupling of isolated cardiomyocyte ‎clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials. ‎‎2013;34(4):1063-72.‎ [Link]
14. Coronel R, Wilders R, Verkerk AO, Wiegerinck RF, Benoist D, Bernus O. Electrophysiological changes in ‎heart failure and their implications for arrhythmogenesis. Biochim Biophys Acta. 2013;1832(12):2432-41.‎ [Link] [DOI:10.1016/j.bbadis.2013.04.002]
15. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473(7347):326-35.‎ [Link]
16. Kittleson MM. New issues in heart transplantation for heart failure. Curr Treat Options Cardiovasc Med. ‎‎2012;14(4):356-69.‎ [Link] [DOI:10.1007/s11936-012-0184-7]
17. Fleischer S, Dvir T. Tissue engineering on the nanoscale: Lessons from the heart. Curr Opin Biotechnol. ‎‎2013;24(4):664-71.‎ [Link] [DOI:10.1016/j.copbio.2012.10.016]
18. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat ‎Nanotechnol. 2011;6:13-22.‎ [Link]
19. Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol ‎Ther. 2005;105(2):151-63.‎ [Link]
20. Shapira A, Feiner R, Dvir T. Composite biomaterial scaffolds for cardiac tissue engineering. Int Mater Rev. ‎‎2016;61(1):1-19.‎ [Link] [DOI:10.1179/1743280415Y.0000000012]
21. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. ‎Chem Soc Rev. 2012;41(6):2256-82.‎ [Link] [DOI:10.1039/C1CS15166E]
22. Fleischer S, Shevach M, Feiner R, Dvir T. Coiled fiber scaffolds embedded with gold nanoparticles ‎improve the performance of engineered cardiac tissues. Nanoscale. 2014;6(16):9410-4.‎ [Link] [DOI:10.1039/C4NR00300D]
23. Shevach M, Maoz BM, Feiner R, Shapira A, Dvir T. Nanoengineering gold particle composite fibers for ‎cardiac tissue engineering. J Mater Chem B. 2013;1(39):5210-7.‎ [Link] [DOI:10.1039/c3tb20584c]
24. Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, et al. Nanowired three dimensional ‎cardiac patches. Nat Nanotechnol. 2011;6(11):720-5.‎ [Link]
25. You JO, Rafat M, Ye GJC, Auguste DT. Nanoengineering the heart: Conductive scaffolds enhance connexin ‎‎43 expression. Nano Lett. 2011;11(9):3643-8.‎ [Link] [DOI:10.1021/nl201514a]
26. Shevach M, Fleischer S, Shapira A, Dvir T. Gold nanoparticle-decellularized matrix hybrids for cardiac ‎tissue engineering. Nano Lett. 2014;14(10):5792-6.‎ [Link] [DOI:10.1021/nl502673m]
27. Nair RS, Ameer JM, Alison MR, Anilkumar TV. A gold nanoparticle coated porcine cholecyst-derived ‎bioscaffold for cardiac tissue engineering. Colloids Surf B Biointerfaces. 2017;157:130-7.‎ [Link] [DOI:10.1016/j.colsurfb.2017.05.056]
28. De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: Present and future commercial ‎applications. Science. 2013;339(6119):535-9.‎ [Link] [DOI:10.1126/science.1222453]
29. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomed. 2006;1(1):15-‎‎30.‎ [Link]
30. Moorman AV, Harrison CJ, Buck GA, Richards SM, Secker-Walker LM, Martineau M, et al. Karyotype is an ‎independent prognostic factor in adult acute lymphoblastic leukemia (ALL): Analysis of cytogenetic data from ‎patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group ‎‎(ECOG) 2993 trial. Blood. 2007;109(8):3189-97.‎ [Link]
31. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev. ‎‎2006;106(3):1105-36.‎ [Link]
32. Sucapane A, Cellot G, Prato M, Giugliano M, Parpura V, Ballerini L. Interactions between cultured neurons ‎and carbon nanotubes: A nanoneuroscience vignette. J Nanoneurosci. 2009;1(1):10-6.‎ [Link] [DOI:10.1166/jns.2009.002]
33. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, et al. Binding and condensation of ‎plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene ‎delivery vectors. J Am Chem Soc. 2005;127(12):4388-96.‎ [Link]
34. Chen YL, Analytis JG, Chu JH, Liu ZK, Mo SK, Qi XL, et al. Experimental realization of a three-dimensional ‎topological insulator, Bi2Te3. Science. 2009;325(5937):178-81.‎ [Link]
35. Polizu S, Savadogo O, Poulin P, Yahia L. Applications of carbon nanotubes-based biomaterials in ‎biomedical nanotechnology. J Nanosci Nanotechnol. 2006;6(7):1883-904.‎ [Link] [DOI:10.1166/jnn.2006.197]
36. Ménard-Moyon C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes for probing and ‎modulating molecular functions. Chem Biol. 2010;17(2):107-15.‎ [Link] [DOI:10.1016/j.chembiol.2010.01.009]
37. Lee CK, Shin SR, Mun JY, Han SS, So I, Jeon JH, et al. Tough supersoft sponge fibers with tunable stiffness ‎from a DNA self-assembly technique. Angew Chem Int Ed Engl. 2009;48(28):5116-20.‎ [Link]
38. Mooney E, Mackle JN, Blond DJ, O'Cearbhaill E, Shaw G, Blau WJ, et al. The electrical stimulation of carbon ‎nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials. 2012;33(26):6132-9.‎ [Link]
39. Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L, et al. Carbon nanotubes promote growth ‎and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett. 2012;12(4):1831-8.‎ [Link]
40. Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, et al. Carbon-nanotube-embedded hydrogel ‎sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013;7(3):2369-80.‎ [Link]
41. Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N, et al. Tough and flexible CNT-‎polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials. 2014;35(26):7346-54.‎ [Link]
42. Pok S, Vitale F, Eichmann SL, Benavides OM, Pasquali M, Jacot JG. Biocompatible carbon nanotube-‎chitosan scaffold matching the electrical conductivity of the heart. ACS Nano. 2014;8(10):9822-32.‎ [Link] [DOI:10.1021/nn503693h]
43. Yaowen L, Xue L, Shuyao W, Ke H. Electrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotube ‎nanofibers for cardiac tissue engineering. J Biomater Tissue Eng. 2016;6(9):719-28.‎ [Link] [DOI:10.1166/jbt.2016.1496]
44. Ahadian S, Davenport Huyer L, Estili M, Yee B, Smith N, Xu Z, et al. Moldable elastomeric polyester-‎carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater. 2017;52:81-91.‎ [Link]
45. Sun H, Tang J, Mou Y, Zhou J, Qu L, Duval K, et al. Carbon nanotube-composite hydrogels promote ‎intercalated disc assembly in engineered cardiac tissues through β1-integrin mediated FAK and RhoA ‎pathway. Acta Biomater. 2017;48:88-99.‎ [Link]
46. Zhou J, Chen J, Sun H, Qiu X, Mou Y, Liu Zet al. Engineering the heart: Evaluation of conductive ‎nanomaterials for improving implant integration and cardiac function. Sci Rep. 2014;4:3733.‎ [Link]
47. Ghasemi Mobarakeh L, Prabhakaran MP, Morshed M, Nasr Esfahani MH, Baharvand H, Kiani S, et al. ‎Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue ‎Eng Regen Med. 2011;5(4):e17-35.‎ [Link]
48. Bengtsson L, Radegran K, Haegerstrand A. In vitro endothelialization of commercially available heart ‎valve bioprostheses with cultured adult human cells. Eur J Cardiothorac Surg. 1993;7(8):393-8.‎ [Link] [DOI:10.1016/1010-7940(93)90001-R]
49. Stout DA. Recent advancements in carbon nanofiber and carbon nanotube applications in drug delivery ‎and tissue engineering. Curr Pharm Des. 2015;21(15):2037-44.‎ [Link] [DOI:10.2174/1381612821666150302153406]
50. Stout DA, Basu B, Webster TJ. Poly(lactic-co-glycolic acid): Carbon nanofiber composites for myocardial ‎tissue engineering applications. Acta Biomater. 2011;7(8):3101-12.‎ [Link] [DOI:10.1016/j.actbio.2011.04.028]
51. Zhang Y, Lim CT, Ramakrishna S, Huang ZM. Recent development of polymer nanofibers for biomedical ‎and biotechnological applications. J Mater Sci Mater Med. 2005;16(10):933-46.‎ [Link] [DOI:10.1007/s10856-005-4428-x]
52. Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G. Electrically conductive ‎chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules. 2014;15(2):635-43.‎ [Link] [DOI:10.1021/bm401679q]
53. Park S, An J, Jung I, Piner RD, An SJ, Li X, et al. Colloidal suspensions of highly reduced graphene oxide in ‎a wide variety of organic solvents. Nano Lett. 2009;9(4):1593-7.‎ [Link]
54. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction ‎of chemically derived graphene oxide. Nat Chem. 2010;2(7):581-7.‎ [Link] [DOI:10.1038/nchem.686]
55. Park J, Kim YS, Ryu S, Kang WS, Park S, Han J, et al. Graphene potentiates the myocardial repair efficacy ‎of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and gap junction ‎protein. Adv Funct Mater. 2015;25(17):2590-600.‎ [Link]
56. Lee TJ, Park S, Bhang SH, Yoon JK, Jo I, Jeong GJ, et al. Graphene enhances the cardiomyogenic ‎differentiation of human embryonic stem cells. Biochem Biophys Res Commun. 2014;452(1):174-80.‎ [Link]
57. Shin SR, Aghaei Ghareh Bolagh B, Gao X, Nikkhah M, Jung SM, Dolatshahi Pirouz A, et al. Layer-by-layer ‎assembly of 3D tissue constructs with functionalized graphene. Adv Funct Mater. 2014;24(39):6136-44.‎ [Link]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.