Volume 22, Issue 2 (2019)                   mjms 2019, 22(2): 103-111 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohseni Vadeghani E, Khorshidi S, Karkhaneh A. A Review on Cell Sheet Engineering Using Temperature Responsive Culture Dishes for Tissue Engineering Applications. mjms. 2019; 22 (2) :103-111
URL: http://mjms.modares.ac.ir/article-30-27101-en.html
1- Biomaterials Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
2- Biomaterials Department, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran , a.karkhaneh@aut.ac.ir
Abstract:   (5713 Views)
Functional disorder in different tissues is a consequence of cell damage in a part of a tissue that can occur because of diseases, traumas, or accidents. Organ transplantation has so far been the only treatment approach for these damages; however, transplantation therapies have been greatly limited by the serious shortage of donors or immune rejection. One of the alternative approaches is tissue engineering that recently has attracted the tremendous attentions of many researchers. Cell sheet engineering is a technology that can construct bioengineered sheet-like tissues without the need of using scaffolds and it is called “scaffold-free tissue engineering”. Cells are cultured at 37℃ on the surfaces grafted with the temperature responsive polymer “poly (N-isopropylacrylamide)”. Then, the cell sheet is harvested with a simple reduced-temperature treatment up to 20℃ and transplanted directly onto the injured surface without sutures or glues. In the present article, researches and experiments in the field of cell sheet engineering have been paid attention. Moreover, the advantages and challenges of this method have been discussed.
Full-Text [PDF 569 kb]   (1440 Downloads)    
Article Type: Systematic Review | Subject: Tissue Engineering
Received: 2018/11/12 | Accepted: 2019/03/9

1. Ma P. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60(2):184-98. [Link] [DOI:10.1016/j.addr.2007.08.041]
2. Yamato M, Okano T. Cell sheet engineering. Materialstoday. 2004;7(5):42-7. [Link] [DOI:10.1016/S1369-7021(04)00234-2]
3. Buck RC. Measurement of Centripetal Migration of Normal Corneal Epithelial Cells in the Mouse. Ophthalmol Vis Sci. 1985;26(9):1296-9. [Link]
4. Kinoshita S, Friend J, Thoft RA. Sex chromatin of donor corneal epithelium in rabbits. Invest Ophthalmol Vis Sci. 1981;21(3):434-41. [Link]
5. Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Investig Ophthalmol Vis Sci. 1983;24(10):1442-3. [Link]
6. Ghaffariyeh A, Honarpisheh N, Karkhaneh A, Abudi R, Moroz ZI, Peyman A, et al. Fyodorov-Zuevkeratoprosthesis implantation: Long-term results in patients with multiple failed corneal grafts. Graefes Arch Clin Exp Ophthalmol. 2011;249(1):93-101. [Link] [DOI:10.1007/s00417-010-1493-8]
7. Karkhaneh A, Mirzadeh H, Ghaffariyeh A, Ebrahimi A, Honarpisheh N, Hosseinzadeh M, et al. Novel materials to enhance corneal epithelial cell migration on keratoprosthesis. Br J Ophthalmol. 2011;95(3):405-9. [Link] [DOI:10.1136/bjo.2009.178632]
8. Karkhaneh A, Mirzadeh H, Ghaffariyeh A.R. Simultaneous graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto polydimethylsiloxane surfaces using a two-step plasma treatment. J Appl Polym Sci. 2007;105(4):2208-17. [Link] [DOI:10.1002/app.26216]
9. Khorshidi S, Karkhaneh A. A self-crosslinking tri-component hydrogel based on functionalized polysaccharides and gelatin for tissue engineering applications. Mater Lett. 2016;164:468-71. [Link] [DOI:10.1016/j.matlet.2015.11.041]
10. Thomas ED, Storb R, Clift RA, Fefer A, Johnson FL, Neiman PE, et al. Bone marrow transplantation. New Engl J Med. 1975;292(17):895-902. [Link] [DOI:10.1056/NEJM197504242921706]
11. Vacanati CA, Bonassar LJ, Vacanati MP, Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med. 2001;344(20):1511-4. [Link] [DOI:10.1056/NEJM200105173442004]
12. Qi Y, Zhao T, Xu K, Dai T, Yan W. The restoration of full-thickness cartilage defects with mesenchymal stem cells (MSCs) loaded and cross-linked bilayer collagen scaffolds on rabbit model. Mol Biol Rep. 2012;39(2):1231-7. [Link] [DOI:10.1007/s11033-011-0853-8]
13. Poh M, Boyer M, Solan A, Dahl SL, Pedrotty D, Banik SS, et al. Blood vessels engineered from human cells. Lancet. 2005;365(9477):2122-4. [Link] [DOI:10.1016/S0140-6736(05)66735-9]
14. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB.Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241-6. [Link] [DOI:10.1016/S0140-6736(06)68438-9]
15. Hayashida Y, Nishida K, Yamato M, Watanabe K, Maeda N, Watanabe H, et al. Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface. Invest Ophthalmol Vis Sci. 2005;46(5):1632-9. [Link] [DOI:10.1167/iovs.04-0813]
16. Chen G, Qi Y, Niu L, Di T, Zhong J, Fang T. Application of the cell sheet technique in tissue engineering. Biomed Rep. 2015;3(6):749-57. [Link] [DOI:10.3892/br.2015.522]
17. Umemoto T, Yamato M, Nishida K, Okano T. Regenerative medicine of cornea by cell sheet engineering using temperature-responsive culture surfaces. Chin Sci Bull. 2013;58(35):4349-56. [Link] [DOI:10.1007/s11434-013-5742-1]
18. Yang J, Yamato M, Nishida K, Ohki T, Kanzaki M, Sekine H, et al. Cell delivery in regenerative medicine: The cell sheet engineering approach. J Control Release. 2006;116(2):193-203. [Link] [DOI:10.1016/j.jconrel.2006.06.022]
19. Tang Zh, Akiyama Y, Okano T. Temperature-responsive polymer modified surface for cell sheet engineering. Polym. 2012;4(3);1478-98. [Link] [DOI:10.3390/polym4031478]
20. Patel NG, Zhang G. Responsive systems for cell sheet detachment. Organogenesis. 2013;9(2):93-100. [Link] [DOI:10.4161/org.25149]
21. Masuda S, Shimizu T. Three-dimensional cardiac tissue fabrication based on cell sheet technology. Adv Drug Deliv Rev. 2016;96:103-9. [Link] [DOI:10.1016/j.addr.2015.05.002]
22. Kwon OH, Kikuchi A, Yamato M, Sakurai Y, Okano T. Rapid cell sheet detachment from Poly (N-isopropylacrylamide)-grafted porous cell culture membranes. J. Biomed Mater Res. 1999;50(1):82-9. https://doi.org/10.1002/(SICI)1097-4636(200004)50:1<82::AID-JBM12>3.0.CO;2-7 [Link] [DOI:10.1002/(SICI)1097-4636(200004)50:13.0.CO;2-7]
23. Yamato M, Utsumi M, Kushida A, Konno C, Kikuchi A, Okano T. Thermo-Responsive Culture Dishes Allow the Intact Harvest of Multilayered Keratinocyte Sheets without Dispase by Reducing Temperature. Tissue Eng. 2001;7(4):473-80. [Link] [DOI:10.1089/10763270152436517]
24. Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, et al. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation. 2004;77(3):379-85. [Link] [DOI:10.1097/01.TP.0000110320.45678.30]
25. Shiroyanagi Y, Yamato M, Yamazaki Y, Toma H, Okano T. Urothelium regeneration using viable cultured urothelial cell sheets grafted on demucosalized gastric flaps. BJU Int. 2004;93(7):1069-75. [Link] [DOI:10.1111/j.1464-410X.2004.04783.x]
26. Hasegawa M, Yamato M, Kikuchi A, Okano T, Ishikawa I. Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng. 2005;11(3-4):469-78. [Link] [DOI:10.1089/ten.2005.11.469]
27. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res. 2002;90(3):e40. [Link] [DOI:10.1161/hh0302.105722]
28. Harimoto M, Yamato M, Hirose M, Takahashi C, Isoi Y, Kikuchi A, et al. Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. J Biomed Mater Res. 2002;62(3):464-70. [Link] [DOI:10.1002/jbm.10228]
29. Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, Okano T. The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials. 2005;26(14):1885-93. [Link] [DOI:10.1016/j.biomaterials.2004.06.005]
30. Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, et al. Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials. 2005;26(33):6415-22. [Link] [DOI:10.1016/j.biomaterials.2005.04.061]
31. Egami M, Haraguchi Y, Shimizu T, Yamato M, Okano T. Latest status of the clinical and industrial applications of cell sheet engineering and regenerative medicine. Arch Pharm Res. 2014;37(1):96-106. [Link] [DOI:10.1007/s12272-013-0299-8]
32. Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials. 2004;25(26):5735-42. [Link] [DOI:10.1016/j.biomaterials.2004.01.066]
33. Khojasteh A, Fahimipour F, Eslaminejad MB, Jafarian M, Jahangir S, Bastami F, et al. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016;69:780-8. [Link] [DOI:10.1016/j.msec.2016.07.011]
34. Yang J, Yamato M, Okano T. Cell-Sheet Engineering Using Intelligent Surfaces. MRS Bull. 2005;30(3):189-93. [Link] [DOI:10.1557/mrs2005.51]
35. Sakaguchi K, Shimizu T, Okano T. Construction of three-dimensional vascularized cardiac tissue with cell sheet engineering. J Control Release. 2014;205:83-8. [Link] [DOI:10.1016/j.jconrel.2014.12.016]
36. Kikuchi A, Okano T. Nanostructured designs of biomedical materials: Applications of cell sheet engineering to functional regenerative tissues and organs. J Control Release. 2005;101(1-3)|:69-84. [Link] [DOI:10.1016/j.jconrel.2004.08.026]
37. Tang Z, Akiyama Y, Okano T. Recent development of temperature-responsive cell culture surface using Poly( N-isopropylacrylamide). J Polym Sci. 2014;52(14):917-26. [Link] [DOI:10.1002/polb.23512]
38. Li L, Zhu Y, Li B, Gao C. Fabrication of thermoresponsive polymer gradients for study of cell adhesion and detachment. Langmuir. 2008;24(23):13632-9. [Link] [DOI:10.1021/la802556e]
39. Chen SQ, Li JM, Pan TT, Li PY, He W. Comb-type grafted hydrogels of PNIPAM and PDMAEMA with reversed network-graft architectures from controlled radical polymerizations. Polymers. 2016;8(38):1-16. [Link] [DOI:10.3390/polym8020038]
40. Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, et al. Rapid Deswelling Response of Poly(N-isopropylacrylamide)Hydrogels by the Formation of Water Release Channels Using Poly(ethylene oxide) Graft Chains. Macromol. 1998;31(18):6099-105. [Link] [DOI:10.1021/ma971899g]
41. Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T, et al. Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc. 2012;7(5):850-8. [Link] [DOI:10.1038/nprot.2012.027]
42. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351(12):1187-96. [Link] [DOI:10.1056/NEJMoa040455]
43. Burillon C, Huot L, Justin V, Nataf S, Chapuis F, Decullier E, et al. Cultured Autologous Oral Mucosal Epithelial Cell Sheet (CAOMECS) transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Invest Ophthalmol Vis Sci. 2012;53(3):1325-31. [Link] [DOI:10.1167/iovs.11-7744]
44. Akiyama Y, Kikuchi A, Yamato M, Okano T. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir. 2004;20(13):5506-11. [Link] [DOI:10.1021/la036139f]
45. Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, et al. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J. 2006;20(6):708-10. [Link] [DOI:10.1096/fj.05-4715fje]
46. Kanzaki M, Yamato M, Yang J, Sekine H, Kohno C, Takagi R, et al. Dynamic sealing of lung air leaks by the transplantation of tissue engineered cell sheets. Biomaterials. 2007;28(29):4294-302. [Link] [DOI:10.1016/j.biomaterials.2007.06.009]
47. Talab SS, Kajbafzadeh AM, Elmi A, Tourchi A, Sabetkish S, Sabetkish N, et al. Bladder reconstruction using scaffold-less autologous smooth muscle cell sheet engineering: Early histological outcomes for autoaugmentation cystoplasty. BJU Int. 2014;114(6):937-45. [Link] [DOI:10.1111/bju.12685]
48. Flores MG, Hasegawa M, Yamato M, Takagi R, Okano T, Ishikawa I. Cementum-periodontal ligament complex regeneration using the cell sheet technique. J Periodontal Res. 2008;43(3):364-71. [Link] [DOI:10.1111/j.1600-0765.2007.01046.x]
49. Iwata T, Yamato M, Tsuchioka H, Takagi R, Mukobata S, Washio K,et al. Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model. Biomaterials. 2009;30(14):2716-23. [Link] [DOI:10.1016/j.biomaterials.2009.01.032]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.