1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive Summary: Heart disease and stroke statistics--2016 update: A report from the American heart association. Circulation. 2016;133(4):447-54. [
Link]
2. Darvishi H. Iran is the world's highest death record [Internet]. Tehran: Salamat News; 2005 [2017 Sep 29; cited 2017 Dec]. Available from: https://goo.gl/ZWTWTQ. [persian] [
Link]
3. Kléber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev. 2004;84(2):431-88. [
Link]
4. Lip GY, Heinzel FR, Gaita F, Juanatey JR, Le Heuzey JY, Potpara T, et al. European Heart Rhythm Association/Heart Failure Association joint consensus document on arrhythmias in heart failure, endorsed by the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society. Eur J Heart Fail. 2015;17(9):848-74. [
Link]
5. Monteiro LM, Vasques-Nóvoa F, Ferreira L, Pinto-do-Ó P, Nascimento DS. Restoring heart function and electrical integrity: Closing the circuit. NPJ Regen Med. 2017;2(9):1-13. [
Link]
6. Vunjak Novakovic G, Eschenhagen T, Mummery C. Myocardial tissue engineering: In vitro models. Cold Spring Harb Perspect Med. 2014;4(3):a014076. [
Link]
7. Venugopal JR, Prabhakaran MP, Mukherjee S, Ravichandran R, Dan K, Ramakrishna S. Biomaterial strategies for alleviation of myocardial infarction. J R Soc Interface. 2012;9(66):1-19. [
Link]
8. Shimada T, Kawazato H, Yasuda A, Ono N, Sueda K. Cytoarchitecture and intercalated disks of the working myocardium and the conduction system in the mammalian heart. Anat Rec A Discov Mol Cell Evol Biol. 2004;280(2):940-51. [
Link]
9. Blank AC, van Veen TA, Jonsson MK, Zelen JS, Strengers JL, de Boer TP, et al. Rewiring the heart: Stem cell therapy to restore normal cardiac excitability and conduction. Curr Stem Cell Res Ther. 2009;4(1):23-33. [
Link]
10. Lakshmanan R, Krishnan UM, Sethuraman S. Living cardiac patch: The elixir for cardiac regeneration. Expert Opin Biol Ther. 2012;12(12):1623-40. [
Link] [
DOI:10.1517/14712598.2012.721770]
11. Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C. 2014;44:24-37. [
Link] [
DOI:10.1016/j.msec.2014.07.061]
12. Naseri S, Diba M, Golkar S, Boccaccini AR, Klupp Taylor RN. Fabrication of gold-nanoshell/polycaprolactonecomposite films with high electrical conductivity. Mater Lett. 2014;130:164-7. [
Link] [
DOI:10.1016/j.matlet.2014.05.067]
13. Hsiao CW, Bai MY, Chang Y, Chung MF, Lee TY, Wu CT, et al. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials. 2013;34(4):1063-72. [
Link]
14. Coronel R, Wilders R, Verkerk AO, Wiegerinck RF, Benoist D, Bernus O. Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochim Biophys Acta. 2013;1832(12):2432-41. [
Link] [
DOI:10.1016/j.bbadis.2013.04.002]
15. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473(7347):326-35. [
Link]
16. Kittleson MM. New issues in heart transplantation for heart failure. Curr Treat Options Cardiovasc Med. 2012;14(4):356-69. [
Link] [
DOI:10.1007/s11936-012-0184-7]
17. Fleischer S, Dvir T. Tissue engineering on the nanoscale: Lessons from the heart. Curr Opin Biotechnol. 2013;24(4):664-71. [
Link] [
DOI:10.1016/j.copbio.2012.10.016]
18. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6:13-22. [
Link]
19. Leor J, Amsalem Y, Cohen S. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol Ther. 2005;105(2):151-63. [
Link]
20. Shapira A, Feiner R, Dvir T. Composite biomaterial scaffolds for cardiac tissue engineering. Int Mater Rev. 2016;61(1):1-19. [
Link] [
DOI:10.1179/1743280415Y.0000000012]
21. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem Soc Rev. 2012;41(6):2256-82. [
Link] [
DOI:10.1039/C1CS15166E]
22. Fleischer S, Shevach M, Feiner R, Dvir T. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues. Nanoscale. 2014;6(16):9410-4. [
Link] [
DOI:10.1039/C4NR00300D]
23. Shevach M, Maoz BM, Feiner R, Shapira A, Dvir T. Nanoengineering gold particle composite fibers for cardiac tissue engineering. J Mater Chem B. 2013;1(39):5210-7. [
Link] [
DOI:10.1039/c3tb20584c]
24. Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, et al. Nanowired three dimensional cardiac patches. Nat Nanotechnol. 2011;6(11):720-5. [
Link]
25. You JO, Rafat M, Ye GJC, Auguste DT. Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression. Nano Lett. 2011;11(9):3643-8. [
Link] [
DOI:10.1021/nl201514a]
26. Shevach M, Fleischer S, Shapira A, Dvir T. Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering. Nano Lett. 2014;14(10):5792-6. [
Link] [
DOI:10.1021/nl502673m]
27. Nair RS, Ameer JM, Alison MR, Anilkumar TV. A gold nanoparticle coated porcine cholecyst-derived bioscaffold for cardiac tissue engineering. Colloids Surf B Biointerfaces. 2017;157:130-7. [
Link] [
DOI:10.1016/j.colsurfb.2017.05.056]
28. De Volder MF, Tawfick SH, Baughman RH, Hart AJ. Carbon nanotubes: Present and future commercial applications. Science. 2013;339(6119):535-9. [
Link] [
DOI:10.1126/science.1222453]
29. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomed. 2006;1(1):15-30. [
Link]
30. Moorman AV, Harrison CJ, Buck GA, Richards SM, Secker-Walker LM, Martineau M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): Analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109(8):3189-97. [
Link]
31. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev. 2006;106(3):1105-36. [
Link]
32. Sucapane A, Cellot G, Prato M, Giugliano M, Parpura V, Ballerini L. Interactions between cultured neurons and carbon nanotubes: A nanoneuroscience vignette. J Nanoneurosci. 2009;1(1):10-6. [
Link] [
DOI:10.1166/jns.2009.002]
33. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, et al. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc. 2005;127(12):4388-96. [
Link]
34. Chen YL, Analytis JG, Chu JH, Liu ZK, Mo SK, Qi XL, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science. 2009;325(5937):178-81. [
Link]
35. Polizu S, Savadogo O, Poulin P, Yahia L. Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J Nanosci Nanotechnol. 2006;6(7):1883-904. [
Link] [
DOI:10.1166/jnn.2006.197]
36. Ménard-Moyon C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes for probing and modulating molecular functions. Chem Biol. 2010;17(2):107-15. [
Link] [
DOI:10.1016/j.chembiol.2010.01.009]
37. Lee CK, Shin SR, Mun JY, Han SS, So I, Jeon JH, et al. Tough supersoft sponge fibers with tunable stiffness from a DNA self-assembly technique. Angew Chem Int Ed Engl. 2009;48(28):5116-20. [
Link]
38. Mooney E, Mackle JN, Blond DJ, O'Cearbhaill E, Shaw G, Blau WJ, et al. The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials. 2012;33(26):6132-9. [
Link]
39. Martinelli V, Cellot G, Toma FM, Long CS, Caldwell JH, Zentilin L, et al. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett. 2012;12(4):1831-8. [
Link]
40. Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, et al. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano. 2013;7(3):2369-80. [
Link]
41. Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N, et al. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials. 2014;35(26):7346-54. [
Link]
42. Pok S, Vitale F, Eichmann SL, Benavides OM, Pasquali M, Jacot JG. Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. ACS Nano. 2014;8(10):9822-32. [
Link] [
DOI:10.1021/nn503693h]
43. Yaowen L, Xue L, Shuyao W, Ke H. Electrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotube nanofibers for cardiac tissue engineering. J Biomater Tissue Eng. 2016;6(9):719-28. [
Link] [
DOI:10.1166/jbt.2016.1496]
44. Ahadian S, Davenport Huyer L, Estili M, Yee B, Smith N, Xu Z, et al. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater. 2017;52:81-91. [
Link]
45. Sun H, Tang J, Mou Y, Zhou J, Qu L, Duval K, et al. Carbon nanotube-composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1-integrin mediated FAK and RhoA pathway. Acta Biomater. 2017;48:88-99. [
Link]
46. Zhou J, Chen J, Sun H, Qiu X, Mou Y, Liu Zet al. Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function. Sci Rep. 2014;4:3733. [
Link]
47. Ghasemi Mobarakeh L, Prabhakaran MP, Morshed M, Nasr Esfahani MH, Baharvand H, Kiani S, et al. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med. 2011;5(4):e17-35. [
Link]
48. Bengtsson L, Radegran K, Haegerstrand A. In vitro endothelialization of commercially available heart valve bioprostheses with cultured adult human cells. Eur J Cardiothorac Surg. 1993;7(8):393-8. [
Link] [
DOI:10.1016/1010-7940(93)90001-R]
49. Stout DA. Recent advancements in carbon nanofiber and carbon nanotube applications in drug delivery and tissue engineering. Curr Pharm Des. 2015;21(15):2037-44. [
Link] [
DOI:10.2174/1381612821666150302153406]
50. Stout DA, Basu B, Webster TJ. Poly(lactic-co-glycolic acid): Carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomater. 2011;7(8):3101-12. [
Link] [
DOI:10.1016/j.actbio.2011.04.028]
51. Zhang Y, Lim CT, Ramakrishna S, Huang ZM. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med. 2005;16(10):933-46. [
Link] [
DOI:10.1007/s10856-005-4428-x]
52. Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G. Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules. 2014;15(2):635-43. [
Link] [
DOI:10.1021/bm401679q]
53. Park S, An J, Jung I, Piner RD, An SJ, Li X, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009;9(4):1593-7. [
Link]
54. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem. 2010;2(7):581-7. [
Link] [
DOI:10.1038/nchem.686]
55. Park J, Kim YS, Ryu S, Kang WS, Park S, Han J, et al. Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and gap junction protein. Adv Funct Mater. 2015;25(17):2590-600. [
Link]
56. Lee TJ, Park S, Bhang SH, Yoon JK, Jo I, Jeong GJ, et al. Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochem Biophys Res Commun. 2014;452(1):174-80. [
Link]
57. Shin SR, Aghaei Ghareh Bolagh B, Gao X, Nikkhah M, Jung SM, Dolatshahi Pirouz A, et al. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. Adv Funct Mater. 2014;24(39):6136-44. [
Link]