Comparison of snRNA-U6 and microRNA-16 for Identification of Suitable Endogenous Control Gene for microRNA Gene Expression Analysis under Dendrosomal Curcumin Treatment in Hepatocellular Carcinoma Cell Lines

Authors
Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
Abstract
Objective: MicroRNAs (miRNAs) are single-stranded small RNAs 18-25 nucleotides in length that regulate gene expression through translational inhibition and mRNA cleavage. Aberrant expression of miRNAs contribute to several diseases. This has increased interest in profiling the expressions of these molecules. Real-time quantitative PCR (RQ-PCR) is a sensitive, quantitative technique for gene expression assessment. To correct for systematic variables such as the amount of starting template, RNA quality and enzymatic efficiencies, RQ-PCR data is commonly normalized to an endogenous control gene which is stably-expressed across the test sample set. To avoid occurring further error in the quantification of gene expression data, it is necessary that candidate endogenous controls be validated in the samples of interest. In this study the expression of miRNA-16 and small nuclear RNA (snRNA)-U6 in hepatocellular carcinoma (HCC) cell lines under dendrosomal curcumin treatment were evaluated to identify appropriate endogenous controls for dendrosomal curcumin-related miRNA expression assays.
Methods: HCC cell lines were treated with dendrosomal curcumin. Dendrosomal curcumin entry into HepG2 and HuH-7 cells was assessed by fluorescent microscopy images. RNA was extracted and cDNA, after polyA polymerization, was synthesised. Then, we performed gene expression assays using RQ-PCR.
Results: In this treatment condition, miRNA-16 for HepG2, snRNA-U6 and the combined miRNA-16 and snRNA-U6 for HuH-7 were suitable endogenous controls.
Conclusion: These genes are appropriate endogenous controls for miRNA expression assays in HCC cell lines under treatment with dendrosomal curcumin. There are stable, non-significant expression changes of these genes.

Keywords


[1]  Cullen BR. Derivation and function of small interfering RNAs and microRNAs. Virus Res 2004; 102(1): 3-9.
[2]  Liu X, Fortin K, Mourelatos Z. MicroRNAs: biogenesis and molecular functions. Brain Pathol 2008; 18(1): 113-21.
[3]  Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[4]  Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403(6772): 901-6.
[5]  Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol 2005; 3(3): e85.
[6]  Garofalo M, Croce CM. microRNAs: Master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol 2011; 51: 25-43.
[7]  Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6(4): 259-69.
[8]  Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature 2005; 435(7043): 834-8.
[9]  Babashah S, Soleimani M. The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 2011; 47(8): 1127-37.
[10]   Yao Z, Mishra L. Cancer stem cells and hepatocellular carcinoma. Cancer Biol Ther 2009; 8(18): 1691-8.
[11]   Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133(2): 647-58.
[12]   Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009; 28(40): 3526-36.
[13]   Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Croce CM, Bolondi L, Negrini M. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res 2009; 15(16): 5073-81.
[14]   Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, Zhuang SM. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res 2009; 69(3): 1135-42.
[15]   Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T, Schmittgen TD, Croce C, Ghoshal K, Jacob ST. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology 2009; 50(4): 1152-61.
[16] Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, Zhuang SM. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 2010; 51(3): 836-45.
[17] Braconi C, Valeri N, Gasparini P, Huang N, Taccioli C, Nuovo G, Suzuki T, Croce CM, Patel T. Hepatitis C virus proteins modulate microRNA expression and chemosensitivity in malignant hepatocytes. Clin Cancer Res 2010; 16(3): 957-66.
[18] Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, Mazzaferro V, Lowe SW, Croce CM, Dejean A.. miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A 2010; 107(1): 264-9.
[19] Teiten MH, Eifes S, Dicato M, Diederich M. Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins (Basel) 2010; 2(1): 128-62.
[20] Babaei E, Sadeghizadeh M, Hassan ZM, Feizi MA, Najafi F, Hashemi SM. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int Immunopharmacol 2012; 12(1): 226-34.
[21] Tahmasebi Mirgani M, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi F, Babaei E. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine 2014; 9: 403-17.
[22] Sarbolouki MN, Parsaee S, Kosary P. Mixed micelle proliposomes for preparation of liposomes containing amphotericin B, in-vitro and ex-vivo studies. PDA J Pharm Sci Technol 2000; 54(3): 240-6.
[23]   Sadeghizadeh M, Ranjbar B, Damaghi M, Khaki L, Sarbolouki MN, Najafi F, Parsaee S, Ziaee AA, Massumi M, Lubitz W, Kudela P, Paukner S, Karami A. Dendrosomes as novel gene porters-III. J Chem Technol Biotechnol 2008; 83: 912-20.
[24]   Sarbolouki MN, Sadeghizadeh M, Yaghoobi MM, Karami A, Lohrasbi T. Dendrosomes: a novel family of vehicles for transfection and therapy. J Chem Technol Biotechnol 2000; 75: 919-22.
[25]   Alizadeh AM, Khaniki M, Azizian S, Mohaghgheghi MA, Sadeghizadeh M, Najafi F. Chemoprevention of azoxymethane-initiated colon cancer in rat by using a novel polymeric nanocarrier--curcumin. Eur J Pharmacol 2012; 689(1-3): 226-32.
[26]   Tahmasebi Mirgani M, Sadeghizadeh M, Najafi F, Mowla SJ. Dendrosomal curcumin induced apoptosis by suppression of pluripotency genes in 5637 bladder cancer cells. Modares Journal of Medical Sciences: Pathobiology, 2013; 16(1): 23-39. (Persian)
[27]   Panahi A, Nakhaisistani R, Sadeghizadeh M. Evaluation of Apoptosis Induction on Gastric cancer AGS Cells Made by Polymer Nano Curcumin. Police Teb J 2012; 3(1): 200-7. (Persian)
[28]   Zamani M, Sadeghizadeh M, Behmanesh M. Dendrosomal curcumin upregulates the expression of long non-coding RNA gene MEG3 in U87MG glioblastoma cells. Modares Journal of Medical Sciences: Pathobiology., 2014. In press. (Persian)
[29]   Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3(7): RESEARCH0034.
[30]   Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M. Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2000; 2(3): 143-7.
[31]   Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64(11): 3753-6.
[32]   Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, Draghici S, Espinoza J, Kusanovic JP, Mittal P, Hassan SS, Kim CJ. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol 2007; 196(3): 261.e1-6.
[33]   Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67(18): 8699-707.
[34]   Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, Ginzinger D, Getts R, Haqq C. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 2006; 5: 24.
[35]   Calin GA, Corce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857-66.
[36]   Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 2008; 14(5): 844-52.
[37]   Davoren PA, McNeill RE, Lowery AJ, Kerin MJ, Miller N. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol Biol 2008; 9: 76.
[38]   McDermott AM, Kerin MJ, Miller N. Identification and validation of miRNAs as endogenous controls for RQ-PCR in blood specimens for breast cancer studies. PLoS One 2013; 8(12): e83718.