Detection of Phenazine Genes in Multi-Drug Resistant Pseudomonas aeruginosa Isolates

Authors
1 Department of Microbiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
2 Department of Microbiology, Zanjan University of Medical Sciences, Zanjan, Iran
Abstract
Objective: Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen with numerous virulence factors considered to be one of the most etiological agents in nosocomial infections. The emergence of multi-drug resistant (MDR) P. aeruginosa has become a serious, worldwide public health threat. This study intended to determine the frequency of phzM, phzS, phzH, phzI, and phzII genes in MDR P. aeruginosa strains isolated from clinical samples.
Methods: In this cross-sectional study, we examined 93 isolates of P. aeruginosa collected from different clinical samples in Zanjan during 1393-94. After identification of isolates by biochemical tests, we performed the antibiotic susceptibility test (Kirby-Bauer) per CLSI guidelines. Then, total DNA was extracted for PCR analysis to detect phzM, phzS, phzH, phzI, and phzII genes.
Results: P. aeruginosa isolates exhibited high-level resistance to Erythromycin and Cefoxitin (95.6%). Amikacin showed the highest activity against isolates with 73.2% susceptibility. There were 88 (94.6%) MDR isolates. The genes had the following frequency among MDR isolates: phzI (96.5%), phzII (93.1%), phzM (45.4%), phzS (27.2%), and phzH (27.2%).
Conclusion: The pathogenesis of P. aeruginosa is clearly multifactorial as shown by the large numbers of virulence factors and the broad spectrum of diseases this bacterium causes. The results indicated a greater frequency of phzI and phzII genes in MDR P. aeruginosa strains. This finding could be an alarm for the infections caused by this microorganism.

Keywords


[1]  Morales E, Cots F, Sala M, Comas M, Belvis F, Riu M, Salvadó M, Grau S, Horcajada JP, Montero MM, Castells X. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. BMC Health Services Research 2012; 12: 122.
[2]  Grant GD, Zhang TT, Gloyne LS, Perkins AV, Kiefel MJ, Anoopkumar-Dukie S. Exogenous Pyocyanin Alters Pseudomonas aeruginosa Susceptibility to Ciprofloxacin. American Journal of Microbiology 2010; 1(1): 9-13.
[3]  Karatuna O, Yagci A. Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clin Microbiol Infect 2010; 16(12): 1770-5.
[4]  Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 2006; 50(1): 43-8.
[5]  Chaudhari V, Gunjal S, Mehta M. Antibiotic resistance patterns of Pseudomonas aeruginosa in a tertiary care hospital in Central India. Int J Med Sci Public Health 2013; 2(2): 386-9.
[6]  Eriksen HM, Iversen BG, Aavitsland P. Prevalence of nosocomial infections in hospital in Norway, 2002 and 2003. J Hosp Infect 2005; 60(1): 40-5.
[7]  Moore NM, Flaws ML. Antimicrobial resistance mechanisms in Pseudomonas aeruginosa. Clin Lab Sci 2011; 24(1): 47-51.
[8]  Hota S, Hirji Z, Stockton K, Lemieux C, Dedier H, Wolfaardt G, Gardam MA. Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infect Control Hosp Epidemiol 2009; 30(1): 25-33.
[9]  Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22(4): 582-610.
[10]             Tumbarello M, Repetto E, Trecarichi EM, Bernardini C, De Pascale G, Parisini A, Rossi M, Molinari MP, Spanu T, Viscoli C, Cauda R, Bassetti M. Multidrug- resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect 2011; 139(11): 1740-9.
[11]             Carroll KC, Hobden JA, Miller S, Morse SA, Mietzner TA, Detrick B, Mitchell TG, Mckerrow JH, Sakanari JA. By McGraw-Hill Education. Jawetz Melnick & Adelbergs Medical Microbiology 27 E (Lange) 27th Edition, 2016; p: 183-5.
[12]             Alhede M, Bjarnsholt T, Givskov M, Alhede M. Pseudomonas aeruginosa biofilms: mechanisms of immune evasion. Adv Appl Microbiol 2014; 86: 1-40.
[13]             Price-Whelan A, Dietrich LEP, Newman DK. Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nature Chemical Biology 2006; 2: 71-8.
[14]             Mentel M, Ahuja EG, Mavrodi DV, Breinbauer R, Thomashow LS, Blankenfeldt W. Of two make one: the biosynthesis of phenazines. Chembiochem 2009; 10(14): 2295-304.
[15]             Liang H, Duan J, Sibley CD, Surette MG, Duan K. Identification of mutants with altered phenazine production in Pseudomonas aeruginosa. J Med Microbiol 2011; 60(Pt 1): 22-34.
[16]             Engel JN. Molecular pathogenesis of acute Pseudomonas aeruginosa infections. In: Hauser AR, Rello J. Severe Infections Caused by Pseudomonas aeruginosa. Dordrecht: Kluwer Academic Publishers, 2003; p: 201-29.
[17]             Mavrodi DV, Peever TL, Mavrodi OV, Parejko JA, Raaijmakers JM, Lemanceau P, Mazurier S, Heide L, Blankenfeldt W, Weller DM, Thomashow LS. Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 2010; 76(3): 866-79.
[18]             Hall GS. Nonfermenting and miscellaneous Gram negative bacilli. In: Mahon CR, Lehman DC, Manuselis G. Textbook of diagnostic microbiology. 3rd ed. Ohio: Saunders-Elsevier; 2007; p: 564-84.
[19]             Clinical and Laboratory Standard Institute. Performance standards for antimicrobial disk susceptibility tests. Approved Standard M2-A9. Wayne, 2013. Available from: www.clsi.org
[20]             Finnan S, Morrissey JP, O'Gara F, Boyd EF. Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol 2004; 42(12): 5783-92.
[21]             Wolf P, Elsässer-Beile U. Pseudomonas exotoxin A: from virulence factor to anti-cancer agent. Int J Med Microbiol 2009; 299(3): 161-76.
[22]             Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the pseudomonas aeruginosa extracellular polysaccharides, alginate, pel, and psl. Front Microbiol 2011; 2(2): 167.
[23]             Kang CI, Kim SH, Kim HB, Park SW, Choe YJ, Oh MD, Kim EC, Choe KW. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 2003; 37(6): 745-51.
[24]             Arora D, Jindal N, Kumar R, Romit. Emerging Antibiotic Resistance in Pseudomonas-A Challenge. Int J Pharm Pharm Sci 2011; 3(2): 82­4.
[25]             Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 2005; 3(4): 307-19.
[26]             Pierson LS 3rd, Pierson EA. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 2010; 86(6): 1659-70.
[27]   Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK. Newman. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 2006; 61(5): 1308-21.
[28]             Starkey M, Rahme LG. Modeling Pseudomonas aeruginosa pathogenesis in plant hosts. Nat Protoc 2009; 4(2): 117-24.
[29]             Jamali S, Shahid M, Sobia F, Singh A, Khan HM. AmpC β-lactamases among Pseudomonas and Acinetobacter species isolates, from a tertiary hospital of North India. International Journal of Advanced Research 2015; 3(2): 361-7.
[30]             Nikokar I, Tishayar A, Flakiyan Z, Alijani K, Rehana-Banisaeed S, Hossinpour M, Amir-Alvaei S, Araghian A. Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran. Iran J Microbiol 2013; 5(1): 36-41. (Persian)
[31]             Imani Foolad A, Rostami Z, Shapouri R. Antimicrobial resistance and ESBL prevalence in Pseudomonas aeruginosa strains isolated from clinical specimen by phenotypic and genotypic methods. J Ardabil Univ Med Sci 2010; 10(3): 189-98. (Persian)
[32]             Dadmanesh M, Pilehvarzadeh M, Eramabadi M, Eramabadi P, Bagheri Moghadam M, Mashayekhi F. Community Acquired Pseudomonas aeroginosa Urinary Tract Infections in Children Hospitalized in a Baqiatallah Hospital, Tehran, Iran: Virulence Profile and Antibiotic Resistance Properties. Biosci Biotech Res Asia 2014; 11(12): 417-26. (Persian)
[33]             Fazeli N, Momtaz H. Virulence Gene Profiles of Multidrug-Resistant Pseudomonas aeruginosa Isolated From Iranian Hospital Infections. Iran Red Crescent Med J 2014; 16(10): e15722. (Persian)