[1] Dubey JP. Toxoplasmosis. Microbiology and microbial infection. Vol 5,New York:OxfordUniversityPress, 1998; p: 303-18.
[2] Loens K, Beck T, Ursi D, Overdijk M, Sillekens P, Goossens H, Ieven M. Development of real-time multiplex nucleic acid sequence-based amplification for detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella spp. in respiratory specimens. J Clin Microbiol. 2008; 46(1): 185-91.
[3] Grover CM, Thulliez P, Remington JS, Boothroyd JC. Rapid prenatal diagnosis of congenital Toxoplasma infection by using polymerase chain reaction and amniotic fluid. J Clin Microbiol 1990; 28(10): 2297–301.
[4]
Jones CD,
Okhravi N,
Adamson P,
Tasker S,
Lightman S. Comparison of PCR detection methods for B1, P30, and 18S rDNA genes of
T. gondii in aqueous humor. Invest Ophthalmol Vis Sci 2000; 41 (3): 634- 44.
[5] Cassaing S, Bessières MH, Berry A, Berrebi A, Fabre R, Magnaval JF. Comparison between two amplification sets for molecular diagnosis of toxoplasmosis by real-time PCR. J Clin Microbiol 2006; 44(3): 720-4.
[6]
Greijer AE,
Adriaanse HM,
Dekkers CA,
Middeldorp JM. Multiplex real-time NASBA for monitoring expression dynamics of human cytomegalovirus encoded IE1 and pp67 RNA. J Clin Virol 2002; 24(1-2): 57-66.
[7]
Deiman B,
van Aarle P,
Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification (NASBA). Mol Biotechnol 2002; 20(2): 163-79.
[8]
Zhao Y,
Park S,
Kreiswirth BN,
Ginocchio CC,
Veyret R,
Laayoun A,
Troesch A,
Perlin DS. Rapid real-time nucleic Acid sequence-based amplification-molecular beacon platform to detect fungal and bacterial bloodstream infections. J Clin Microbiol 2009; 47(7): 2067-78.
[9]
Schneider P,
Schoone G,
Schallig H,
Verhage D,
Telgt D,
Eling W,
Sauerwein R. Quantification of
Plasmodium falciparum gametocytes in differential stages of development by quantitative nucleic acid sequence-based amplification. Mol Biochem Parasitol 2004; 137(1): 35-41.
[10] Mugasa CM, Laurent T, Schoone GJ, Kager PA, Lubega GW, Schallig HDFH. Nucleic acid sequence-based amplification with oligochromatography for detection of Trypanosoma brucei in clinical samples. J Clin Microbiol 2009; 47(3): 630-5.
[11]
Baeumner AJ,
Humiston MC,
Montagna RA,
Durst RA. Detection of viable oocysts of
Cryptosporidium parvum following nucleic acid sequence based amplification. Anal Chem 2001; 73(6): 1176-80.
[12]
Cultrera R,
Seraceni S,
Contini C. Efficacy of a novel reverse transcriptase-polymerase chain reaction (RT-PCR) for detecting
Toxoplasma gondii bradyzoite gene expression in human clinical specimens. Mol Cell Probes 2002; 16(1): 31-9.
[13] Shirbazou SH, Dalimi A, Foruzandeh Moghaddam M, Ghaffarifar F. Standardization of NASBA method by using 18s rRNA gene for identification of Leishmania major parasite. Kowsar Med J 2009; 14(3): 137-42. (Persian)
[14]
Candotti D,
Richetin A,
Cant B,
Temple J,
Sims C,
Reeves I,
Barbara JA,
Allain JP. Evaluation of a transcription-mediated amplification-based HCV and HIV-1 RNA duplex assay for screening individual blood donations: a comparison with a minipool testing system. Transfusion 2003; 43(2): 215-25.
[15]
Lin MH,
Chen TC,
Kuo TT,
Tseng CC,
Tseng CP. Real-time PCR for quantitative detection of
Toxoplasma gondii. J Clin Micobial 1995; 38(11): 4121-5.
[16]
Jauregui LH,
Higgins J,
Zarlenga D,
Dubey JP,
Lunney JK. Development of a real-time PCR assay for detection of
Toxoplasma gondii in pig and mouse tissues. J Clin Micobial 2001; 39(6): 2065-71.
[17]
Hierl T,
Reischl U,
Lang P,
Hebart H,
Stark M,
Kyme P,
Autenrieth IB. Preliminary evaluation of one conventional nested and two real-time PCR assays for the detection of
Toxoplasma gondii in immunocompromised patients. J Clin Micobial 2004; 53(Pt 7): 629-32.