[1] Olszta M, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB. Bone structure and formation: A new perspective. Mater Sci Eng R Rep 2007; 58(3-5): 77-116.
[2]
Park J,
Ries J,
Gelse K,
Kloss F,
von der Mark K,
Wiltfang J,
Neukam FW,
Schneider H. Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer: a comparison of adenoviral vectors and liposomes. Gene Ther 2003; 10(13):1089-98.
[3]
Drosse I,
Volkmer E,
Capanna R,
De Biase P,
Mutschler W,
Schieker M. Tissue engineering for bone defect healing: an update on a multi-component approach. Injury 2008; 39 Suppl 2: S9-S20.
[4]
Schmidmaier G,
Capanna R,
Wildemann B,
Beque T,
Lowenberg D. Bone morphogenetic proteins in critical-size bone defects: what are the options? Injury 2009; 40 Suppl 3: S39-43.
[5]
Porter JR,
Ruckh TT,
Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 2009; 25(6): 1539-60.
[6]
Salgado AJ,
Coutinho OP,
Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004; 4(8): 743-65.
[7] Hollinger J, Einhorn T, Doll B, Sfeir C. Bone tissue engineering.Florida: CRC press LLC 2005; p: 27-8.
[8]
Hutmacher DW,
Schantz JT,
Lam CX,
Tan KC,
Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 2007; 1(4): 245-60.
[9] Ma P, Elisseeff J. Scaffolding in Tissue Engineering.Florida: CRC Press Taylor & Francis Group 2006; p: 23-8.
[10] Meyer U, Wiesmann H. Bone and cartilage engineering.Berlin: Springer-Verlag 2006; p: 17-9.
[11]
Karageorgiou V,
Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26(27): 5474-91.
[12] Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci 2007; 32(8-9): 991-1007.
[13] Hardy JG, Römer LM, Scheibel TR. Polymeric materials based on silk proteins. Polymer 2008; 49(20): 4309-27.
[14] Hardy JG, Scheibel TR. Composite materials based on silk proteins. Prog Polym Sci 2010; 35(9): 1093-115.
[15]
Hofmann S,
Hagenmüller H,
Koch AM,
Müller R,
Vunjak-Novakovic G,
Kaplan DL,
Merkle HP,
Meinel L. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 2007; 28(6): 1152-62.
[16]
Kim HJ,
Kim UJ,
Kim HS,
Li C,
Wada M,
Leisk GG,
Kaplan DL. Bone tissue engineering with premineralized silk scaffolds. Bone 2008; 42(6): 1226-34.
[17] Collins AM, Skaer NJV, Gheysens T, Knight D, Bertram C, Roach HI, Oreffo ROC, Von-Aulock S, Baris T, Skinner J, Mann S. Bone-like resorbable silk-based scaffolds for load-bearing osteoregenerative applications
. Adv Mater 2009; 21: 75-8.
[18]
Wang Y,
Rudym DD,
Walsh A,
Abrahamsen L,
Kim HJ,
Kim HS,
Kirker-Head C,
Kaplan DL. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 2008; 29(24-25): 3415-28.
[19] Vunjak-Novakovic G, Freshney R. Culture of Cells for Tissue Engineering.New Jersey: Wiley 2006; p: 323-75.
[20] Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Compos Sci Technol 2005; 65(15-16): 2385-406.
[21]
Rezwan K,
Chen QZ,
Blaker JJ,
Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006; 27(18): 3413-31.
[22]
Karageorgiou V,
Tomkins M,
Fajardo R,
Meinel L,
Snyder B,
Wade K,
Chen J,
Vunjak-Novakovic G,
Kaplan DL. Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo. J Biomed Mater Res A 2006; 78(2): 324-34.
[23]
Kim SS,
Ahn KM,
Park MS,
Lee JH,
Choi CY,
Kim BS. A poly(lactide-co-glycolide) /hydroxyapatite composite scaffold with enhanced osteoconductivity. J Biomed Mater Res A 2007; 80(1): 206-15.
[24] Balamurugan A, Sockalingum G, Michel J, Fauré J, Banchet V, Wortham L, Bouthors S, Laurent-Maquin D, Balossier G. Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Mater Lett 2006; 60(29-30): 3752-7.
[25]
Um IC,
Kweon HY,
Park YH,
Hudson S. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol 2001; 29(2): 91-7.
[26] Ayutsedea J, Gandhi M, Sukigara S, Micklus M, Chen HE, Ko F. Regeneration of Bombyx mori silk by electrospinning Part 3: characterization of electrospun nonwoven mat. Polymer 2005; 46(5): 1625-34.
[27]
Mandal BB,
Kundu SC. Non-bioengineered silk gland fibroin protein: characterization and evaluation of matrices for potential tissue engineering applications. Biotechnol Bioeng 2008; 100(6): 1237-50.
[28] Zhu ZH, Ohgo K, Asakura T. Preparation and characterization of regenerated Bombyx mori silk fibroin fiber with high strength. Express Polym Lett 2008; 12(2): 885-9.
[29] Iridag Y, Kazanci M. Preparation and characterization of bombyx mori silk fibroin and wool keratin. J Appl Polym Sci 2006; 100(5): 4260-4.
[30]
Hesaraki S,
Alizadeh M,
Nazarian H,
Sharifi D. Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass. J Mater Sci Mater Med 2010; 21(2): 695-705.