[1] Dillow A, Lowman A. Biomimetic Materials And Design: Biointerfacial Strategies, Tissue Engineering And Targeted Drug Delivery. Philadelphia: CRC Press, 2002; p: 290-2.
[2] Shalumon K, Aulekha KH, Chennazhi KP, Tamra H, Nair SV, Jayakumar R. Fabriation of Chitosan/poly(caprolacton) nanofibrous scaffold for bone and skin tissue engineering. Int J Biol Macromol 2011; 48(4): 571–6.
[3] Chandra R, Rustgi R. Biodegradable polymers. Progr Polym Sci 1998; 23: 1273–335.
[4] Okada M. Chemical syntheses of biodegradable polymers. Prog Polym Sci 2002; 27(1): 87-133.
[5] Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polyme Sci 2010; 35(4): 403-40.
[6]
Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000; 21(24): 2529-43.
[7]
Gunatillake PA,
Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater 2003; 5: 1-16.
[8] Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Comp Sci Tech 2004; 64(6): 789-817.
[9] Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007; 32(8-9): 762-98.
[10] Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci 2011; 35(10): 1217-56.
[11] Liu H, Xie F, Yu Long, Chen L, Li L. Thermal processing of starch-based polymers. Prog Polym Sci 2009; 34(12): 1348-68.
[12]
Santos MI,
Unger RE,
Sousa RA,
Reis RL,
Kirkpatrick CJ. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularizationn. Biomaterials 2009; 30(26): 4407-15.
[13] Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Polym Sci 2010: 35(4): 403-40.
[14]
Alves NM,
Saiz-Arroyo C,
Rodriguez-Perez MA,
Reis RL,
Mano JF. Microhardness of starch based biomaterials in simulated physiological conditions.
Acta Biomater 2007; 3(1): 69-76.
[15]
Singh RP,
Pandey JK,
Rutot D,
Degée P,
Dubois P. Biodegradation of poly(epsilon-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohydr Res 2003; 338(17): 1759-69.
[16] Rosa DS,Lopes DR, Calil MRThermal properties and enzymatic degradation of blends of poly(ε-caprolactone) with starches. Polym Test 2005; 24(6): 756-61.
[17] IshiakuUS, Pang KW, Lee WS, Mohd Ishak ZA. Mechanical properties and enzymic degradation of thermoplastic and granular sago starch filled poly(ε-caprolactone). Euro Pol J 2002; 38(2): 393-401.
[18] Avella M, Errico ME, Laurienzo P, Martuscelli E, Raimo M, Rimedio R. Preparation and characterisation of compatibilised polycapro-lactone/starch composites. Polymer 2000; 41(10): 3875-81.
[19] Su J, Chen L, Li L. Characterization of polycaprolactone and starch blends for potential application within the biomaterials field. Afr J Biotechnol 2012; 11(3): 694-701.
[20] Park JB,LakesRS. Biomaterials: An Introduction.New York: Springer, 2007; p: 134-46.
[21]
Kokubo T,
Takadama H. How useful is SBF in predicting in vivobone bioactivity? Biomaterials 2006; 27(15): 2907-15.
[22] CamposA, Marconcini JM, Martins-Franchetti SM, Mattoso LHC. The influence of UV-C irradiation on the properties of thermoplastic starch and polycaprolactone biocomposite with sisal bleached fibers. Polym Degrad Stab 2012; 97(10): 1948-55.
[23] Wu CS. Physical properties and biodegradability of maleated-polycaprolactone/starch composite. Polym Degrad Stab 2003; 80(1): 127-34.
[24] Wang J, Cheung MK, Mi Y. Miscibility and morphology in crystalline/amorphous blends of poly(caprolactone)/poly(4-vinylphenol) as studied by DSC, FTIR, and 13C solid state NMR. Polymer 2002; 43(4): 1357-64.
[25]
Liu H
, Chaudhary D
, Yusa SI
, Tadé MO. Glycerol/ starch/ Na
+- montmorillonite nano-composites: A XRD, FTIR, DSC and
1H NMR study.
Carbohydr Polym 2011; 83(4): 1591-97.
[26] DuarteARC, Mano JF, Reis RL. Enzymatic degradation of 3D scaffolds of starch-poly-(ε-caprolactone) prepared by supercritical fluid technology. Polym Degrad Stab 2010; 95(10): 2110-7.
[27] di Francoa CR, Cyrasa VP, Busalmen JP, Ruseckaite RA,
Vázquez A. Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polym Degrad Stab 2004; 86(10): 95-103.
[28]
Pan H,
Zhao X,
Darvell BW,
Lu WW. Apatite-formation ability--predictor of "bioactivity"? Acta Biomater 2010; 6(11): 4181-8.
[29]
Yang S,
Leong KF,
Du Z,
Chua CK. The design of scaffolds for use in tissue engineering.PartI. Traditional factors. Tissue Eng 2001; 7(6): 679-89.
[30]
Hutmacher DW,
Schantz JT,
Lam CX,
Tan KC,
Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 2007; 1(4): 245-60.