[1]
Spanagel R,
Heilig M. Addiction and its brain science.
Addiction 2005; 100(12): 1813-22.
[2]
Agrawal A,
Lynskey MT. Are there genetic influences on addiction: evidence from family, adoption and twin studies.
Addiction 2008; 103(7): 1069-81.
[3]
Chen Y,
Sommer C. The role of mitogen-activated protein kinase (MAPK) in morphine tolerance and dependence.
Mol Neurobiol 2009; 40(2): 101-7.
[5] Mayer DJ, Mao J, Holt J, Price DD. Cellular mechanisms of neuropathic pain, morphine tolerance, and their interactions. Proc Natl Acad Sci U S A 1999; 96(14): 7731-6.
[6]
Thomas MJ,
Kalivas PW,
Shaham Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction.
Br J Pharmacol 2008; 154(2): 327-42.
[7]
Doench JG,
Sharp PA. Specificity of microRNA target selection in translational repression.
Genes Dev 2004; 18(5): 504-11.
[8]
Babashah S,
Sadeghizadeh M,
Tavirani MR,
Farivar S,
Soleimani M. Aberrant microRNA expression and its implications in the pathogenesis of leukemias.
Cell Oncol (Dordr) 2012; 35(5): 317-34.
[9]
Hausser J,
Landthaler M,
Jaskiewicz L,
Gaidatzis D,
Zavolan M. Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets.
Genome Res 2009; 19(11): 2009-20.
[10]
Grimson A,
Farh KK,
Johnston WK,
Garrett-Engele P,
Lim LP,
Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing.
Mol Cell 2007; 27(1): 91-105.
[11]
Bartel DP. MicroRNAs: target recognition and regulatory functions.
Cell 2009; 136(2): 215-33.
[12]
Miska EA. How microRNAs control cell division, differentiation and death.
Curr Opin Genet Dev 2005; 15(5): 563-8.
[13]
Dreyer JL. New insights into the roles of microRNAs in drug addiction and neuroplasticity.
Genome Med 2010; 2(12): 92.
[14]
Rodríguez RE. Morphine and microRNA Activity: Is There a Relation with Addiction?
Front Genet 2012; 3: 223.
[15]
Dave RS,
Khalili K. Morphine treatment of human monocyte-derived macrophages induces differential miRNA and protein expression: impact on inflammation and oxidative stress in the central nervous system.
J Cell Biochem 2010; 110(4): 834-45.
[16]
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.
J Immunol Methods 1983; 65(1-2): 55-63.
[17] Talebi M, Mashayekhi M, Rajabi S, Rahmani MR, Roohbakhsh A, Shamsizadeh A. Effect of chronic morphine treatment on tactile learning in rat. Afr J Pharm Pharmacol 2011; 5(19): 2128-31.
[18]
Zheng H,
Chu J,
Zeng Y,
Loh HH,
Law PY. Yin Yang 1 phosphorylation contributes to the differential effects of mu-opioid receptor agonists on microRNA-190 expression.
J Biol Chem 2010; 285(29): 21994-2002.
[19]
Bilecki W,
Zapart G,
Ligeza A,
Wawrzczak-Bargiela A,
Urbański MJ,
Przewłocki R. Regulation of the extracellular signal-regulated kinases following acute and chronic opioid treatment.
Cell Mol Life Sci 2005; 62(19-20): 2369-75.
[20]
Sanchez-Simon FM,
Zhang XX,
Loh HH,
Law PY,
Rodriguez RE. Morphine regulates dopaminergic neuron differentiation via miR-133b.
Mol Pharmacol 2010; 78(5): 935-42.
[21]
Valjent E,
Pagès C,
Hervé D,
Girault JA,
Caboche J. Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain.
Eur J Neurosci 2004; 19(7): 1826-36.
[22]
Rohde DS,
McKay WR,
Abbadie C,
Basbaum AI. Contribution of sacral spinal cord neurons to the autonomic and somatic consequences of withdrawal from morphine in the rat.
Brain Res 1997; 745(1-2): 83-95.
[23]
Cui Y,
Chen Y,
Zhi JL,
Guo RX,
Feng JQ,
Chen PX. Activation of p38 mitogen-activated protein kinase in spinal microglia mediates morphine antinociceptive tolerance.
Brain Res 2006; 1069(1): 235-43.
[24]
Ma W,
Zheng WH,
Powell K,
Jhamandas K,
Quirion R. Chronic morphine exposure increases the phosphorylation of MAP kinases and the transcription factor CREB in dorsal root ganglion neurons: an in vitro and in vivo study.
Eur J Neurosci 2001; 14(7): 1091-104.
[25]
Obata K,
Katsura H,
Mizushima T,
Sakurai J,
Kobayashi K,
Yamanaka H,
Dai Y,
Fukuoka T,
Noguchi K. Roles of extracellular signal-regulated protein kinases 5 in spinal microglia and primary sensory neurons for neuropathic pain.
J Neurochem 2007; 102(5): 1569-84.
[26]
Li CY,
Mao X,
Wei L. Genes and (common) pathways underlying drug addiction.
PLoS Comput Biol 2008; 4(1): e2.