[1]
Oh H,
Bradfute SB,
Gallardo TD,
Nakamura T,
Gaussin V,
Mishina Y,
Pocius J,
Michael LH,
Behringer RR,
Garry DJ,
Entman ML,
Schneider MD. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction.
Proc Natl Acad Sci U S A 2003; 100(21): 12313-8.
[2]
Beltrami AP,
Barlucchi L,
Torella D,
Baker M,
Limana F,
Chimenti S,
Kasahara H,
Rota M,
Musso E,
Urbanek K,
Leri A,
Kajstura J,
Nadal-Ginard B,
Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration.
Cell 2003; 114(6): 763-76.
[3]
Messina E,
De Angelis L,
Frati G,
Morrone S,
Chimenti S,
Fiordaliso F,
Salio M,
Battaglia M,
Latronico MV,
Coletta M,
Vivarelli E,
Frati L,
Cossu G,
Giacomello A. Isolation and expansion of adult cardiac stem cells from human and murine heart.
Circ Res 2004; 95(9): 911-21.
[4]
Hosoda T. C-kit-positive cardiac stem cells and myocardial regeneration.
Am J Cardiovasc Dis 2012; 2(1): 58-67.
[5]
Behfar A,
Zingman LV,
Hodgson DM,
Rauzier JM,
Kane GC,
Terzic A,
Pucéat M. Stem cell differentiation requires a paracrine pathway in the heart.
FASEB J 2002; 16(12): 1558-66.
[6]
Leri A,
Kajstura J,
Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration.
Physiol Rev 2005; 85(4): 1373-416.
[7]
Wilson KD,
Hu S,
Venkatasubrahmanyam S,
Fu JD,
Sun N,
Abilez OJ,
Baugh JJ,
Jia F,
Ghosh Z,
Li RA,
Butte AJ,
Wu JC. Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. Circ Cardiovasc Genet 2010; 3(5): 426-35.
[8]
Chen JF,
Mandel EM,
Thomson JM,
Wu Q,
Callis TE,
Hammond SM,
Conlon FL,
Wang DZ. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation.
Nat Genet 2006; 38(2): 228-33.
[9]
Rao PK,
Kumar RM,
Farkhondeh M,
Baskerville S,
Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs.
Proc Natl Acad Sci U S A 2006; 103(23): 8721-6.
[10]
Smits AM,
van Vliet P,
Metz CH,
Korfage T,
Sluijter JP,
Doevendans PA,
Goumans MJ. Human cardiomyocyte progenitor cells differentiate into functional mature cardio-myocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat Protoc 2009; 4(2): 232-43.
[11]
Zhao Y,
Samal E,
Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis.
Nature 2005; 436(7048): 214-20.
[12] Kwon C, Han Z, Olson EN, Srivastava D. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. PNAS 2005; 102(52): 18986-91.
[13]
Turrini P,
Corrado D,
Basso C,
Nava A,
Bauce B,
Thiene G. Dispersion of ventricular depolarization-repolarization: a noninvasive marker for risk stratification in arrhythmogenic right ventricular cardiomyopathy.
Circulation 2001; 103(25): 3075-80.
[14]
Edmondson DG,
Lyons GE,
Martin JF,
Olson EN. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis.
Development 1994; 120(5): 1251-63.
[15]
Miano JM. Serum response factor: toggling between disparate programs of gene expression.
J Mol Cell Cardiol 2003; 35(6): 577-93.
[16]
Liu N,
Bezprozvannaya S,
Williams AH,
Qi X,
Richardson JA,
Bassel-Duby R,
Olson EN. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart.
Genes Dev 2008; 22(23): 3242-54.
[17]
Cordes KR,
Srivastava D. MicroRNA regulation of cardiovascular development.
Circ Res 2009; 104(6): 724-32.
[18] Valiunas V, Doronin S, Valiuniene L, Potapoval I, Zuckerman J, Walcott B, Robinson RB, Rosen MR, Brink PR, Cohen IS. Human mesenchymal stem cells make cardiac cennexins and form functional gap junction. J Physiol 2004; 555 (3): 617-26.