[1] Hench LL, Polak JM. Third-generation biomedical materials. Science 2002; 295(5557): 1014-7.
[2] Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005; 310(5751): 1135-8.
[3]
Hunt JA. Regenerative medicine: Materials in a cellular world.
Nat Mater 2008; 7(8): 617-8.
[4]
Geiger B,
Spatz JP,
Bershadsky AD. Environmental sensing through focal adhesions.
Nat Rev Mol Cell Biol 2009; 10(1): 21-33.
[5] Peña J, Corrales T, Izquierdo-Barba I, Doadrio AL, Vallet-Regí M. Long term degradation of poly(3-caprolactone) films in biologically related fluids. Polym Degrad Stab 2006; 91: 1424-32.
[6] Elbert DL and Hubbell JA. Surface Treatments of Polymers for Biocompatibility. Annu Rev Mater Sci 1996; 26: 294-365.
[7]
Hubbell JA. Bioactive biomaterials. Curr Opin Biotechnol 1999; 10(2): 123-9.
[8]
Jahani H,
Kaviani S,
Hassanpour-Ezatti M,
Soleimani M,
Kaviani Z,
Zonoubi Z. The effect of aligned and random electrospun fibrous scaffolds on rat mesenchymal stem cell proliferation.
Cell J 2012; 14(1): 31-8.
[9] Eslaminejad MB, Bagheri F, Zandi M, Nejati E, Zomorodian E. Study of Mesenchymal Stem Cell Proliferation and Bone Differentiation on Composite Scaffolds of PLLA and Nano Hydroxyapatite with Different Morphologies. Cell Journal (Yakhteh) 2011; 12(4):469-76.
[10]
Zhang Y,
Ouyang H,
Lim CT,
Ramakrishna S,
Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 2005; 72(1): 156-65.
[11]
Chong EJ,
Phan TT,
Lim IJ,
Zhang YZ,
Bay BH,
Ramakrishna S,
Lim CT. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution.
Acta Biomater 2007; 3(3): 321-30.
[12]
Choi JS,
Lee SJ,
Christ GJ,
Atala A,
Yoo JJ. The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes.
Biomaterials 2008; 29(19): 2899-906.
[13]
Zhang YZ,
Venugopal J,
Huang ZM,
Lim CT,
Ramakrishna S. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts.
Biomacromolecules 2005; 6(5): 2583-9.
[14] Wang S, Zhang Y, Yin G, Wang H, Dong Z. Electrospun Polylactide/Silk Fibroin–Gelatin Composite Tubular Scaffolds for Small-Diameter Tissue Engineering Blood Vessels. J Appl Polym Sci 2009; 113: 2675-82.
[15] Jo S, Engel PS and Mikos AG. Synthesis of poly(ethylene glycol)-tethered poly(propylene fumarate) and its modification with GRGD peptide. Polymer. 2000; 41(21): 7595-604.
[16]
Quirk RA,
Chan WC,
Davies MC,
Tendler SJ,
Shakesheff KM. Poly(L-lysine)-GRGDS as a biomimetic surface modifier for poly(lactic acid).
Biomaterials 2001; 22(8): 865-72.
[17]
Andukuri A,
Kushwaha M,
Tambralli A,
Anderson JM,
Dean DR,
Berry JL,
Sohn YD,
Yoon YS,
Brott BC,
Jun HW. A hybrid biomimetic nanomatrix composed of electrospun polycaprolactone and bioactive peptide amphiphiles for cardiovascular implants.
Acta Biomater 2011; 7(1): 225-33.
[18]
Tambralli A,
Blakeney B,
Anderson J,
Kushwaha M,
Andukuri A,
Dean D,
Jun HW. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers.
Biofabrication 2009; 1(2): 025001.
[19]
van der Flier A,
Sonnenberg A. Function and interactions of integrins.
Cell Tissue Res 2001; 305(3): 285-98.
[20]
Ruoslahti E. RGD and other recognition sequences for integrins.
Annu Rev Cell Dev Biol 1996; 12: 697-715.
[21]
Massumi M,
Abasi M,
Babaloo H,
Terraf P,
Safi M,
Saeed M,
Barzin J,
Zandi M,
Soleimani M. The effect of topography on differentiation fates of matrigel-coated mouse embryonic stem cells cultured on PLGA nanofibrous scaffolds.
Tissue Eng Part A 2012; 18(5-6): 609-20.
[22]
Hersel U,
Dahmen C,
Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.
Biomaterials 2003; 24(24): 4385-415.
[23] Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Crosslinking of the electrospun gelatin nanofibers. Polymer 2006; 47(8): 2911-7.
[24]
Ghasemi-Mobarakeh L,
Prabhakaran MP,
Morshed M,
Nasr-Esfahani MH,
Ramakrishna S. Electrospun poly (epsilon-caprolactone)/ gelatin nanofibrous scaffolds for nerve tissue engineering.
Biomaterials 2008; 29(34): 4532-9.
[25]
Tillman BW,
Yazdani SK,
Lee SJ,
Geary RL,
Atala A,
Yoo JJ. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction.
Biomaterials 2009; 30(4): 583-8.
[26]
McClure MJ,
Sell SA,
Simpson DG,
Walpoth BH,
Bowlin GL. A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study.
Acta Biomater 2010; 6(7): 2422-33.
[27]
Sisson K,
Zhang C,
Farach-Carson MC,
Chase DB,
Rabolt JF. Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability.
Biomacromolecules 2009; 10(7): 1675-80.
[28]
Tomihata K,
Ikada Y. Cross-linking of gelatin with carbodiimides.
Tissue Eng 1996; 2(4): 307-13.
[29]
Grover CN,
Cameron RE,
Best SM. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering.
J Mech Behav Biomed Mater 2012; 10: 62-74.
[30]
Songchotikunpan P,
Tattiyakul J,
Supaphol P. Extraction and electrospinning of gelatin from fish skin.
Int J Biol Macromol 2008; 42(3): 247-55.
[31]
Irvine DJ,
Ruzette AV,
Mayes AM,
Griffith LG. Nanoscale clustering of RGD peptides at surfaces using comb polymers. 2. Surface segregation of comb polymers in polylactide.
Biomacromolecules 2001; 2(2): 545-56.
[32] Park KH. Arg-Gly-Asp (RGD) sequence conjugated in a synthetic copolymer bearing a sugar moiety for improved culture of parenchymal cells (hepatocytes). Biotechnol Lett 2002; 24: 1401-6.
[33]
Zhang H,
Lin CY,
Hollister SJ. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds.
Biomaterials 2009; 30(25): 4063-9.