[1]
Kipen HM,
Laskin DL. Smaller is not always better: nanotechnology yields nanotoxicology.
Am J Physiol Lung Cell Mol Physiol 2005; 289(5): L696-7.
[2] Appenroth KJ. Definition of “heavy metals” and their role in biological systems. In: Sherameti I, Varma A (Editors). Soil heavy metals. New York: Springer, USA, 2010; p: 19-29.
[3]
Pujalté I,
Passagne I,
Brouillaud B,
Tréguer M,
Durand E,
Ohayon-Courtès C,
L'Azou B. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells.
Part Fibre Toxicol 2011; 8: 10.
[4] Oberdörster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 1994; 102(Suppl 5):173-9.
[5]
Johnston HJ,
Hutchison G,
Christensen FM,
Peters S,
Hankin S,
Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity.
Crit Rev Toxicol 2010; 40(4): 328-46.
[6]
Hirn S,
Semmler-Behnke M,
Schleh C,
Wenk A,
Lipka J,
Schäffler M,
Takenaka S,
Möller W,
Schmid G,
Simon U,
Kreyling WG. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration.
Eur J Pharm Biopharm 2011; 77(3): 407-16.
[8]
Lewinski N,
Colvin V,
Drezek R. Cytotoxicity of nanoparticles.
Small 2008; 4(1): 26-49.
[9]
Chen Z,
Meng H,
Xing G,
Chen C,
Zhao Y,
Jia G,
Wang T,
Yuan H,
Ye C,
Zhao F,
Chai Z,
Zhu C,
Fang X,
Ma B,
Wan L. Acute toxicological effects of copper nanoparticles in vivo.
Toxicol Lett 2006; 163(2): 109-20.
[10]
Wang J,
Zhou G,
Chen C,
Yu H,
Wang T,
Ma Y,
Jia G,
Gao Y,
Li B,
Sun J,
Li Y,
Jiao F,
Zhao Y,
Chai Z. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration.
Toxicol Lett 2007; 168(2): 176-85.
[11]
Abdelhalim MA,
Jarrar BM. Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration.
J Nanobiotechnology 2012; 10: 5.
[12]
Geraets L,
Oomen AG,
Schroeter JD,
Coleman VA,
Cassee FR. Tissue distribution of inhaled micro- and nano-sized cerium oxide particles in rats: results from a 28-day exposure study.
Toxicol Sci 2012; 127(2): 463-73.
[13]
De Jong WH,
Borm PJ. Drug delivery and nanoparticles: applications and hazards.
Int J Nanomedicine 2008; 3(2): 133-49.
[14]
Li C,
Taneda S,
Taya K,
Watanabe G,
Li X,
Fujitani Y,
Nakajima T,
Suzuki AK. Effects of in utero exposure to nanoparticle-rich diesel exhaust on testicular function in immature male rats.
Toxicol Lett 2009; 185(1): 1-8.
[15]
Yauk C,
Polyzos A,
Rowan-Carroll A,
Somers CM,
Godschalk RW,
Van Schooten FJ,
Berndt ML,
Pogribny IP,
Koturbash I,
Williams A,
Douglas GR,
Kovalchuk O. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location.
Proc Natl Acad Sci U S A 2008; 105(2): 605-10.
[16]
Roels HA,
Ghyselen P,
Buchet JP,
Ceulemans E,
Lauwerys RR. Assessment of the permissible exposure level to manganese in workers exposed to manganese dioxide dust.
Br J Ind Med 1992; 49(1): 25-34.
[17]
Hobbesland A,
Kjuus H,
Thelle DS. Study of cancer incidence among 6363 male workers in four Norwegian ferromanganese and silicomanganese producing plants.
Occup Environ Med 1999; 56(9): 618-24.
[18] Mohammadi Fartkhooni F, Noori A, Momayez M, Sadeghi L, Shirani K, Yousefi Babadi V. The effects of nano titanium dioxide (TiO2) in spermatogenesis in wistar rat. Euro J Exp Bio 2013; 3(4): 145-9.
[19]
Al Faraj A,
Fauvelle F,
Luciani N,
Lacroix G,
Levy M,
Crémillieux Y,
Canet-Soulas E. In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques.
Int J Nanomedicine 2011; 6: 351-61.
[20]
Wang Z,
Chen Z,
Zuo Q,
Song F,
Wu D,
Cheng W,
Fan W. Reproductive toxicity in adult male rats following intra-articular injection of cobalt-chromium nanoparticles.
J Orthop Sci 2013; 18(6): 1020-6.
[21] Ha Y, Shin JS, Lee DY, Rhim T. Fluorescently Labeled Nanoparticles Enable the Detection of Stem Cell-Derived Hepatocytes. Bull Korean Chem Soc 2012; 33(6): 1983-8.
[22]
Kong WH,
Park K,
Lee MY,
Lee H,
Sung DK,
Hahn SK. Cationic solid lipid nanoparticles derived from apolipoprotein-free LDLs for target specific systemic treatment of liver fibrosis.
Biomaterials 2013; 34(2): 542-51.
[23]
Kim JS,
Yoon TJ,
Yu KN,
Kim BG,
Park SJ,
Kim HW,
Lee KH,
Park SB,
Lee JK,
Cho MH. Toxicity and tissue distribution of magnetic nanoparticles in mice.
Toxicol Sci 2006; 89(1): 338-47.
[24] Nosrati N, Hassanpour-Ezzati M, Mousavi SZ, Rahmanifar MS, Rezagholiyan S. Comparison of MnO2 nanoparticles and microparticles distribution in CNS and muscle and effect on acute pain threshold in rats. Nanomed J 2013; 1(3):180-90.
[25] Rezagolian S, Hassanpour-Ezatti M, Mousavi SZ, Rahmanifar MS, Nosrati N. Comparison of chronic administration of manganese oxide micro and nanoparticles on liver function parameters in male rats. Daneshvar Med 2013; 20(106): 1-13.
[26]
Geiser M,
Kreyling WG. Deposition and biokinetics of inhaled nanoparticles.
Part Fibre Toxicol 2010; 7: 2.
[27] Zhang Y, Yang Y, Zhang Y, Zhang T, Ye M. Heterogeneous oxidation of naproxen in the presence of α-MnO2 nanostructures with different morphologies. Appl Catal B Environ 2012; 127: 182-9.
[28] Pearse AE. Histochemistry. Theoritical and applied. Analytical technology. 4th ed, Edinburgh: Churchill-Livingstone, 1985; p: 441-1055.
[29]
Escobedo G,
Arjona-Román JL,
Meléndez-Pérez R,
Suárez-Álvarez K,
Guzmán C,
Aguirre-García J,
Gutiérrez-Reyes G,
Vivas O,
Varela-Fascinetto G,
Rodríguez-Romero A,
Robles-Díaz G,
Kershenobich D. Liver exhibits thermal variations according to the stage of fibrosis progression: A novel use of modulated-differential scanning calorimetry for research in hepatology.
Hepatol Res 2013; 43(7): 785-94.
[30]
Del Monte U. Swelling of hepatocytes injured by oxidative stress suggests pathological changes related to macromolecular crowding.
Med Hypotheses 2005; 64(4): 818-25.
[31]
Ma P,
Luo Q,
Chen J,
Gan Y,
Du J,
Ding S,
Xi Z,
Yang X. Intraperitoneal injection of magnetic Fe
3O
4-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice.
Int J Nanomedicine 2012; 7: 4809-18.
[32] Patel JM, Bahadur A. Histopathological Manifestations of Sub Lethal Toxicity of Copper Ions in Catla catla. Am Euras J Toxicol Sci 2011; 3(1): 1-5.
[33]
Nel A,
Xia T,
Mädler L,
Li N. Toxic potential of materials at the nanolevel.
Science 2006; 311(5761): 622-7.
[34]
Deelman LE,
Declèves AE,
Rychak JJ,
Sharma K. Targeted renal therapies through microbubbles and ultrasound.
Adv Drug Deliv Rev 2010; 62(14): 1369-77.
[35]
Wu J,
Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells.
Adv Drug Deliv Rev 2008; 60(10): 1103-16.
[36]
L'azou B,
Jorly J,
On D,
Sellier E,
Moisan F,
Fleury-Feith J,
Cambar J,
Brochard P,
Ohayon-Courtès C. In vitro effects of nanoparticles on renal cells. Part Fibre Toxicol 2008; 5: 22.
[37]
Choi CH,
Zuckerman JE,
Webster P,
Davis ME. Targeting kidney mesangium by nanoparticles of defined size. Proc Natl Acad Sci U S A 2011; 108(16): 6656-61.
[38]
Flesken-Nikitin A,
Toshkov I,
Naskar J,
Tyner KM,
Williams RM,
Zipfel WR,
Giannelis EP,
Nikitin AY. Toxicity and biomedical imaging of layered nanohybrids in the mouse.
Toxicol Pathol 2007; 35(6): 806-12.
[39]
Fernández-Urrusuno R,
Fattal E,
Féger J,
Couvreur P,
Thérond P. Evaluation of hepatic antioxidant systems after intravenous administration of polymeric nanoparticles.
Biomaterials 1997; 18(6): 511-7.
[40] Thanos C, Sandor M, Jong Y, Jacob J, Yip KP, Harper J, Morrell C, Scherer J and Mathiowitz E. Inter-species uptake of polymeric particles. Mater Res Proc 1998; 550: 65-70.
[41]
Brenner BM,
Garcia DL,
Anderson S. Glomeruli and blood pressure. Less of one, more the other?
Am J Hypertens 1988; 1(4 Pt 1): 335-47.
[42]
Bennett KM,
Zhou H,
Sumner JP,
Dodd SJ,
Bouraoud N,
Doi K,
Star RA,
Koretsky AP. MRI of the basement membrane using charged nanoparticles as contrast agents. Magn Reson Med 2008; 60(3): 564-74.
[44]
Pisanic TR 2nd,
Blackwell JD,
Shubayev VI,
Fiñones RR,
Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons.
Biomaterials 2007; 28(16): 2572-81.
[45]
Trickler WJ,
Lantz SM,
Murdock RC,
Schrand AM,
Robinson BL,
Newport GD,
Schlager JJ,
Oldenburg SJ,
Paule MG,
Slikker W Jr,
Hussain SM,
Ali SF. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells.
Toxicol Sci 2010; 118(1): 160-70.
[46]
Yazdi AS,
Guarda G,
Riteau N,
Drexler SK,
Tardivel A,
Couillin I,
Tschopp J. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β.
Proc Natl Acad Sci U S A 2010; 107(45): 19449-54.
[47]
Gearing AJ,
Hemingway I,
Pigott R,
Hughes J,
Rees AJ,
Cashman SJ. Soluble forms of vascular adhesion molecules, E-selectin, ICAM-1, and VCAM-1: pathological significance.
Ann N Y Acad Sci 1992; 667: 324-31.
[48]
Gonçalves DM,
Girard D. Titanium dioxide (TiO2) nanoparticles induce neutrophil influx and local production of several pro-inflammatory mediators in vivo.
Int Immunopharmacol 2011; 11(8): 1109-15.
[49]
Kasper J,
Hermanns MI,
Bantz C,
Maskos M,
Stauber R,
Pohl C,
Unger RE,
Kirkpatrick JC. Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures.
Part Fibre Toxicol 2011; 8(1): 6.