[1] Hafezi F, Hosseinnejad F, Fooladi AA, Mafi SM, Amiri A, Nourani MR. Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. J Mater Sci Mater Med 2012; 23(11): 2783-92.
[2] Marino JT, Ziran BH. Use of solid and cancellous autologous bone graft for fractures and non:union:s. Orthop Clin North Am 2010; 41(1): 15-26.
[3] Hosseini Aghozbeni EA, Imani Fooladi AA, Nourani MR. Evaluation of Biocompatible Bioglass/Gelatin ScaffoldEnhanced by Mesenchymal Stem Cell for Bone Tissue Regeneration. J of Applied Tissue Engineering 2014; 1(1): 8-12.
[4] Azami M, Tavakol S, Samadikuchaksaraei A, Hashjin MS, Baheiraei N, Kamali M, Nourani MR. A Porous Hydroxyapatite/Gelatin Nanocomposite Scaffold for Bone Tissue Repair: In Vitro and In Vivo Evaluation. J Biomater Sci Polym Ed 2012; 23(18): 2353-68.
[5] Mozafari M, Moztarzadeh F, editors. Novel porous gelatin/bioactive glass scaffolds with controlled pore structure engineered via compound techniques for bone tissue engineering. 2011 1st Middle East Conference on Biomedical Engineering, Sharjah, 2011; p: 104-7. Available from: http://ieeexplore. ieee.org/stamp/stamp.jsp?tp=&arnumber=5752076&isnumber=5751960
[6] Elisseeff J, McIntosh W, Fu K, Blunk T, Langer R. Controlled‐release of IGF‐I and TGF‐β1 in a photopolymerizing hydrogel for cartilage tissue engineering. Journal of Orthopaedic Research 2001; 19(6): 1098-104.
[7] Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue engineering. Pharm Res 2000; 17(5): 497-504.
[8] Mahoney MJ, Saltzman WM. Transplantation of brain cells assembled around a programmable synthetic microenvironment. Nat Biotechnol 2001; 19(10): 934-9.
[9] Shea LD, Smiley E, Bonadio J, Mooney DJ. DNA delivery from polymer matrices for tissue engineering. Nature biotechnology. 1999; 17: 551-4.
[10] Cooper ML, Hansbrough JF. Use of a composite skin graft composed of cultured human keratinocytes and fibroblasts and a collagen-GAG matrix to cover full-thickness wounds on athymic mice. Surgery 1991; 109(2): 198-207.
[11] Hansbrough JF, Morgan J, Greenleaf G, Parikh M, Nolte C, Wilkins L. Evaluation of Graftskin composite grafts on full-thickness wounds on athymic mice. J Burn Care Rehabil 1994; 15(4): 346-53.
[12] Eaglstein WH, Falanga V. Tissue engineering and the development of Apligraf®, a human skin equivalent. Clinical Therapeutics 1997; 19(5): 894-905.
[13] ureux N, Germain L, Auger FA. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 1998; 12(13): 1331-40.
[14] Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med 2001; 344(20): 1511-4.
[15] Kruyt MC, van Gaalen SM, Oner FC, Verbout AJ, de Bruijn JD, Dhert WJ. Bone tissue engineering and spinal fusion: the potential of hybrid constructs by combining osteoprogenitor cells and scaffolds. Biomaterials 2004; 25(9): 1463-73.
[16] Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng 2007; 13(5): 947-55.
[17] Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997; 100(2): 297-302
[18] Valonen PK, Moutos FT, Kusanagi A, Moretti MG, Diekman BO, Welter JF,
Caplan AI,
Guilak F, Freed LE. In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly (ɛ-caprolactone) scaffolds. Biomaterials 2010; 31(8): 2193-200.
[19] Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues--state of the art and future perspectives. J Biomater Sci Polym Ed 2001; 12(1): 107-24.
[20] Griffith LG. Polymeric biomaterials. Acta Materialia 2000; 48(1): 263-77.
[21] Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 2001; 55(2): 141-50.
[22]Hayashi T. Biodegradable polymers for biomedical uses. Progress in Polymer Science 1994; 19(4): 663-702.
[23] Reis RL, Neves NM, Mano JF, Gomes ME, Marques AP, Azevedo HS. Natural-based polymers for biomedical applications. A volume in Woodhead Publishing Series in Biomaterials, Elsevier, 2008; p: 374-95.
[24] Azami M, Moztarzadeh F, Tahriri M. Preparation, characterization and mechanical properties of controlled porous gelatin/ hydroxyapatite nanocomposite through layer solvent casting combined with freeze-drying and lamination techniques. J Porous Mater 2010; 17(3): 313-20.
[25] Baheiraei N, Azami M. Investigation of fluorine incorporation within gelatin/cal-cium phosphate nanocomposite scaffold prepared through a diffusion method. Advanced Composites Letters 2013; 22(5): 106-12.
[26] Thomson RC, Yaszemski MJ, Powers JM, Mikos AG. Hydroxyapatite fiber reinforced poly (α-hydroxy ester) foams for bone regeneration. Biomaterials 1998; 19(21): 1935-43.
[27] Zhang W, Shen Y, Pan H, Lin K, Liu X, Darvell BW, Lu WW, Chang J, Deng L, Wang D, Huang W. Effects of strontium in modified biomaterials. Acta Biomater 2011; 7(2): 800-8.
[28] Lu HH, El-Amin SF, Scott KD, Laurencin CT. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res A 2003; 64(3): 465-74.
[29] Kim SS, Ahn KM, Park MS, Lee JH, Choi CY, Kim BS. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J Biomed Mater Res A 2007; 80(1): 206-15.
[30] LeGeros RZ, Legeros JP. Phosphate Minerals in Human Tissues. In: Phosphate Minerals. Edited by Nriagu JO, Moore PB. Berlin, Heidelberg: Springer, 1984; p: 351-85.
[31] Jones JR. Reprint of: Review of bioactive glass: From Hench to hybrids. Acta biomater 2015; 23 Suppl: S53-82.
[32] Gauthier O, Goyenvalle E, Bouler JM, Guicheux J, Pilet P, Weiss P, Daculsi G. Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. J Mater Sci Mater Med 2001; 12(5): 385-90.
[33] Bandyopadhyay A, Bernard S, Xue W, Bose S. Calcium Phosphate‐Based Resorbable Ceramics: Influence of MgO, ZnO, and SiO2 Dopants. Journal of the American Ceramic Society 2006; 89(9): 2675-88.
[34] Klein CP, Patka P, den Hollander W. Macroporous calcium phosphate bioceramics in dog femora: a histological study of interface and biodegradation. Biomaterials 1989; 10(1): 59-62.
[35] Martin RB, Chapman MW, Sharkey NA, Zissimos SL, Bay B, Shors EC. Bone ingrowth and mechanical properties of coralline hydroxyapatite 1 yr after implantation. Biomaterials 1993; 14(5): 341-8.
[36] Wagoner Johnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 2011; 7(1): 16-30.
[37] Lee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 2007; 59(4-5): 339-59.
[38] Yan J, Li J, Runge MB, Dadsetan M, Chen Q, Lu L, Yaszemski MJ. Cross-linking characteristics and mechanical properties of an injectable biomaterial composed of polypropylene fumarate and polycaprolactone co-polymer. J Biomater Sci Polym Ed 2011; 22(4-6): 489-504.
[39] Cheung HY, Lau KT, Lu TP, Hui D. A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B: Engineering 2007; 38(3): 291-300.
[40] Balla VK, Bodhak S, Bose S, Bandyopadhyay A. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater 2010; 6(8): 3349-59.
[41] Luo CJ, Nangrejo M, Edirisinghe M. A novel method of selecting solvents for polymer electrospinning. Polymer 2010; 51(7): 1654-62.
[42] Xue W, Krishna BV, Bandyopadhyay A, Bose S. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 2007; 3(6): 1007-18.
[43] Verron E, Khairoun I, Guicheux J, Bouler J-M. Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discovery Today 2010; 15(13-14): 547-52.
[44] Yun Y, Dong Z, Lee N, Liu Y, Xue D, Guo X,
Kuhlmann J,
Doepke A, Halsall HB, Heineman W, Sundaramurthy S, Schulz MJ, Yin Z, Shanov V, Hurd D, Nagy P, Li W, Fox C. Revolutionizing biodegradable metals. Materials Today 2009; 12(10): 22-32.
[45] Witte F, Ulrich H, Rudert M, Willbold E. Biodegradable magnesium scaffolds: Part 1: appropriate inflammatory response. J Biomed Mater Res A 2007; 81(3): 748-56.
[46] Baheiraei N, Azami M, Hosseinkhani H. Investigation of magnesium incorporation within gelatin/calcium phosphate nanocomposite scaffold for bone tissue engineering. Int J Appl Ceram Technol 2015; 12(2): 245-53.
[47] Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 2012; 30(10): 546-54.
[48] Lizzi F, Villat C, Attik N, Jackson P, Grosgogeat B, Goutaudier C. Mechanical characteristic and biological behaviour of implanted and restorative bioglasses used in medicine and dentistry: A systematic review. Dent Mater 2017; 33(6): 702-712.
[49] Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006; 27(18): 3413-31.
[50] Williams DF. Definitions in Biomaterials: Proceedings of a Consensus Conference of the European Society for Biomaterials, Chester, England, March 3-5, 1986, Volume 4, p: 54-7.
[51] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006; 27(15): 2907-15.
[52] Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 1990; 24(6): 721-34.
[53] Ducheyne P. Bioceramics: material characteristics versus in vivo behavior. J Biomed Mater Res 1987; 21(A2 Suppl): 219-36.
[54] Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials 2009; 30(12): 2175-9.
[55] Ohura K, Bohner M, Hardouin P, Lemaître J, Pasquier G, Flautre B. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. J Biomed Mater Res 1996; 30(2): 193-200.
[56] Apelt D, Theiss F, El-Warrak AO, Zlinszky K, Bettschart-Wolfisberger R, Bohner M, Matter S, Auer JA, von Rechenberg B. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 2004; 25(7-8): 1439-51.
[57] Theiss F, Apelt D, Brand B, Kutter A, Zlinszky K, Bohner M, Matter S, Frei C, Auer JA, von Rechenberg B. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 2005; 26(21): 4383-94.
[58] Kotani S, Fujita Y, Kitsugi T, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T. B Bone bonding mechanism of beta-tricalcium phosphate. J Biomed Mater Res 1991; 25(10): 1303-15.
[59] Hench LL, Polak JM. Third-generation biomedical materials. Science 2002; 295(5557): 1014-7.
[60] Krishnan V, Lakshmi T. Bioglass: A novel biocompatible innovation. J Adv Pharm Technol Res 2013; 4(2): 78-83.
[61] Bellucci D, Anesi A, Salvatori R, Chiarini L, Cannillo V. A comparative in vivo evaluation of bioactive glasses and bioactive glass-based composites for bone tissue repair. Materials Science and Engineering: C 2017; 79: 286-95.
[62] Huang M, Hill RG2, Rawlinson SCF. Zinc bioglasses regulate mineralization in human dental pulp stem cells. Dent Mater 2017; 33(5): 543-552.
[63] Mariappan C, Ranga N. Influence of silver on the structure, dielectric and antibacterial effect of silver doped bioglass-ceramic nanoparticles. Ceramics International 2017; 43(2): 2196-201.
[64] Baheiraei N, Moztarzadeh F, Hedayati M. Preparation and antibacterial activity of Ag/SiO 2 thin film on glazed ceramic tiles by sol–gel method. Ceramics international 2012; 38(4): 2921-5.
[65] Vichery C, Nedelec JM. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications. Materials (Basel) 2016; 9(4): 288.
[66] Rohanová D, Boccaccini AR, Yunos DM, Horkavcová D, Březovská I, Helebrant A. TRIS buffer in simulated body fluid distorts the assessment of glass-ceramic scaffold bioactivity. Acta Biomater 2011; 7(6): 2623-30.
[67] Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 2006; 27(11): 2414-25.
[68] Huang W, Day DE, Kittiratanapiboon K, Rahaman MN. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 2006; 17(7): 583-96.
[69] Huang W, Rahaman MN, Day DE, Li Y. Mechanisms for converting bioactive silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution. Phys Chem Glasses: Eur J Glass Sci Technol B 2006; 47(6): 647-58.
[70] Fu Q, Rahaman MN, Fu H, Liu X. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A 2010; 95(1): 164-71.
[71] Day D, White JE, Brown RF, McMenamin KD. Transformation of borate glasses into biologically useful materials. Glass Technology 2003; 44(2): 75-81.
[72] Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials 2004; 25(27): 5857-66.
[73] Han X, Day DE. Reaction of sodium calcium borate glasses to form hydroxyapatite. J Mater Sci Mater Med 2007; 18(9): 1837-47.
[74] Zhao D, Huang W, Rahaman MN, Day DE, Wang D. Mechanism for converting Al2O3-containing borate glass to hydroxyapatite in aqueous phosphate solution. Acta Biomater 2009; 5(4): 1265-73.
[75] Pan HB, Zhao XL, Zhang X, Zhang KB, Li LC, Li ZY, Lam WM, Lu WW, Wang DP, Huang WH, Lin KL, Chang J. Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interface 2010; 7(48): 1025-31.
[76] Brown RF, Rahaman MN, Dwilewicz AB, Huang W, Day DE, Li Y, Bal BS. Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells. J Biomed Mater Res A 2009; 88(2): 392-400.
[77] Marion NW, Liang W, Reilly GC, Day DE, Rahaman MN, Mao JJ. Borate glass supports the in vitro osteogenic differentiation of human mesenchymal stem cells. Mechanics of Advanced Materials and Structures 2005; 12(3): 239-46.
[78] Fu H, Fu Q, Zhou N, Huang W, Rahaman MN, Wang D, Liu X. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Materials Science and Engineering: C 2009; 29(7): 2275-81.
[79] Zhang X, Jia W, Gu Y, Xiao W, Liu X, Wang D, Zhang C, Huang W, Rahaman MN, Day DE, Zhou N. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials 2010; 31(22): 5865-74.
[80] Brown RF, Day DE, Day TE, Jung S, Rahaman MN, Fu Q. Growth and differentiation of osteoblastic cells on 13-93 bioactive glass fibers and scaffolds. Acta Biomater 2008; 4(2): 387-96.
[81] Yao A, Wang D, Huang W, Fu Q, Rahaman MN, Day DE. In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. Journal of the American Ceramic Society 2007; 90(1): 303-6.
[82] Uo M, Mizuno M, Kuboki Y, Makishima A, Watari F. Properties and cytotoxicity of water soluble Na2O-CaO-P2O5 glasses. Biomaterials 1998; 19(24): 2277-84.
[83] Franks K, Abrahams I, Knowles JC. Development of soluble glasses for biomedical use Part I: in vitro solubility measurement. J Mater Sci Mater Med 2000; 11(10): 609-14.
[84] Salih V, Franks K, James M, Hastings GW, Knowles JC, Olsen I. Development of soluble glasses for biomedical use Part II: the biological response of human osteoblast cell lines to phosphate-based soluble glasses. J Mater Sci Mater Med 2000; 11(10): 615-20.
[85] Ahmed I, Lewis M, Olsen I, Knowles JC. Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5-CaO-Na 2O glass system. Biomaterials. 2004;25(3):491-9.
[86] Ahmed I, Lewis M, Olsen I, Knowles JC. Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5-CaO-Na 2O glass fibre system. Biomaterials 2004; 25(3): 501-7.
[87] Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Kushitani S, Iwaki H. Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res 1999; 44(1): 31-43.
[88] Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 2000; 276(2): 461-5.
[89] Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 2001; 55(2): 151-7.
[90] Xynos ID, Hukkanen MV, Batten JJ, Buttery LD, Hench LL, Polak JM. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro: implications and applications for bone tissue engineering. Calcif Tissue Int 2000; 67(4): 321-9.
[91] Bi L, Jung S, Day D, Neidig K, Dusevich V, Eick D, Bonewald L. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J Biomed Mater Res A 2012; 100(12): 3267-75.
[92] Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 1970; 4(3): 433-56.
[93] Hollinger JO, Brekke J, Gruskin E, Lee D. Role of bone substitutes. Clin Orthop Relat Res 1996; (324): 55-65.
[94] Fu Q, Rahaman MN, Bal BS, Bonewald LF, Kuroki K, Brown RF. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A 2010; 95(1): 172-9.
[95] Jung SB, Day DE. Conversion kinetics of silicate, borosilicate, and borate bioactive glasses to hydroxyapatite. Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B 2009; 50(2): 85-8.
[96] Reilly DT, Burstein AH, Frankel VH. The elastic modulus for bone. J Biomech 1974; 7(3): 271-5.
[97] Fung YC. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993; p: 510-3.
[98] Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Medical Engineering & Physics 1995; 17(5): 347-55.
[99] Fu Q, Rahaman MN, Bal BS, Brown RF, Day DE. Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater 2008; 4(6): 1854-64.
[100] Wheeler DL, Stokes KE, Park HM, Hollinger JO. Evaluation of particulate Bioglass in a rabbit radius ostectomy model. J Biomed Mater Res 1997; 35(2): 249-54.
[101] Lin Y, Brown RF, Jung SB, Day DE. Angiogenic effects of borate glass microfibers in a rodent model. J Biomed Mater Res A 2014; 102(12): 4491-9.
[102] Carmeliet P. Manipulating angiogenesis in medicine. Journal of Internal Medicine 2004; 255(5): 538-61.
[103] Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev 2010; 16(2): 199-207.
[104] Mao C, Chen X, Miao G, Lin C. Angiogenesis stimulated by novel nanoscale bioactive glasses. Biomed Mater 2015; 10(2): 025005.
[105] Leach JK, Kaigler D, Wang Z, Krebsbach PH, Mooney DJ. Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 2006; 27(17): 3249-55.
[106] Leu A, Stieger SM, Dayton P, Ferrara KW, Leach JK. Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect. Tissue Eng Part A 2009; 15(4): 877-85.
[107] Leu A, Leach JK. Proangiogenic potential of a collagen/bioactive glass substrate. Pharm Res 2008; 25(5): 1222-9.
[108] Hu GF. Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem 1998; 69(3): 326-35.
[109] Sen CK, Khanna S, Venojarvi M, Trikha P, Ellison EC, Hunt TK, Roy S. Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Heart Circ Physiol 2002; 282(5): H1821-7.
[110] Frangoulis M, Georgiou P, Chrisostomidis C, Perrea D, Dontas I, Kavantzas N, Kostakis A, Papadopoulos O. Rat epigastric flap survival and VEGF expression after local copper application. Plast Reconstr Surg 2007; 119(3): 837-43.
[111] Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP. Bioactive glass in tissue engineering. Acta Biomater 2011; 7(6): 2355-73.