1- St Laurent G, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet 2015; 31 (5): 239-251.
2- Bian S, Sun T. Functions of noncoding RNAs in neural development and neurological diseases. Mol Neurobiol 2011; 44 (3): 359-373.
3- Wan P, Su W, Zhuo Y. The Role of Long Noncoding RNAs in Neurodegenerative Diseases. Mol Neurobiol 2017; 54 (3): 2012-2021.
4- Karnati HK, Panigrahi MK, Gutti RK, Greig NH, Tamargo IA. miRNAs: Key Players in Neurodegenerative Disorders and Epilepsy. J Alzheimers Dis 2015; 48 (3): 563-580.
5- Breiner A, Zinman L, Bourque PR. Edaravone for amyotrophic lateral sclerosis: barriers to access and lifeboat ethics. Cmaj 2020; 192 (12): E319-e320.
6- Wang G, van der Walt JM, Mayhew G, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 2008; 82 (2): 283-289.
7- Zhang Z, Cheng Y. miR-16-1 promotes the aberrant α-synuclein accumulation in parkinson disease via targeting heat shock protein 70. ScientificWorldJournal 2014; 2014: 938348.
8- Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM. Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 2009; 106 (31): 13052-13057.
9- Leggio L, Vivarelli S, L'Episcopo F, et al. microRNAs in Parkinson's Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches. Int J Mol Sci 2017; 18: 2698.
10- Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Junn E. Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson's disease. FEBS Lett 2015; 589 (3): 319-325.
11- Xiong R, Wang Z, Zhao Z, et al. MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiol Aging 2014; 35 (3): 705-714.
12- Chen Y, Gao C, Sun Q, et al. MicroRNA-4639 Is a Regulator of DJ-1 Expression and a Potential Early Diagnostic Marker for Parkinson's Disease. Front Aging Neurosci 2017; 9: 232.
13- Cho HJ, Liu G, Jin SM, et al. MicroRNA-205 regulates the expression of Parkinson's disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 2013; 22 (3): 608-620.
14- Gehrke S, Imai Y, Sokol N, Lu B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 2010; 466 (7306): 637-641.
15- Carrieri C, Forrest AR, Santoro C, et al. Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells' differentiation in vitro and in neurochemical models of Parkinson's disease. Front Cell Neurosci 2015; 9: 114.
16- Wang S, Zhang X, Guo Y, Rong H, Liu T. The long noncoding RNA HOTAIR promotes Parkinson's disease by upregulating LRRK2 expression. Oncotarget 2017; 8 (15): 24449-24456.
17- Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 2008; 28 (53): 14341-14346.
18- Hoss AG, Labadorf A, Latourelle JC, et al. miR-10b-5p expression in Huntington's disease brain relates to age of onset and the extent of striatal involvement. BMC Med Genomics 2015; 8: 10.
19- Fukuoka M, Takahashi M, Fujita H, et al. Supplemental Treatment for Huntington's Disease with miR-132 that Is Deficient in Huntington's Disease Brain. Mol Ther Nucleic Acids 2018; 11: 79-90.
20- Xie Y, Hayden MR, Xu B. BDNF overexpression in the forebrain rescues Huntington's disease phenotypes in YAC128 mice. J Neurosci 2010; 30 (44): 14708-14718.
21- Francelle L, Galvan L, Gaillard MC, et al. Striatal long noncoding RNA Abhd11os is neuroprotective against an N-terminal fragment of mutant huntingtin in vivo. Neurobiol Aging 2015; 36 (3): 1601.e1607-1616.
22- Bertogliat MJ, Morris-Blanco KC, Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 2020; 133: 104642.
23- Toivonen JM, Manzano R, Oliván S, Zaragoza P, García-Redondo A, Osta R. MicroRNA-206: a potential circulating biomarker candidate for amyotrophic lateral sclerosis. PLoS One 2014; 9 (2): e89065.
24- Rinchetti P, Rizzuti M, Faravelli I, Corti S. MicroRNA Metabolism and Dysregulation in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2018; 55 (3): 2617-2630.
25- Li PP, Sun X, Xia G, et al. ATXN2-AS, a gene antisense to ATXN2, is associated with spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis. Ann Neurol 2016; 80 (4): 600-615.
26- Douglas AGL. Non-coding RNA in C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia: A perfect storm of dysfunction. Noncoding RNA Res 2018; 3 (4): 178-187.
27- Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007; 316 (5830): 1484-1488.
28- Lekka E, Hall J. Noncoding RNAs in disease. FEBS Lett 2018; 592 (17): 2884-2900.
29- Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11 (9): 597-610.
30- Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004; 5 (3): R13.
31- Coolen M, Bally-Cuif L. MicroRNAs in brain development and physiology. Curr Opin Neurobiol 2009; 19 (5): 461-470.
32- Parvini N, Ahmadi S. Role of MicroRNAs in Development of Immune Cells and Nervous System and their Relation to Multiple Sclerosis. Shefaye Khatam 2015; 3 (1): 131-144. (Persian).
33- Ahmadi S, Zobeiri M, Bradburn S. Molecular mechanisms underlying actions of certain long noncoding RNAs in Alzheimer's disease. Metab Brain Dis 2020; 35 (5): 681-693.
34- Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2008; 105 (2): 716-721.
35- Bartels T, Choi JG, Selkoe DJ. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 2011; 477 (7362): 107-110.
36- Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiol Dis 2018; 109 (Pt B): 249-257.
37- Bartels T, Choi JG, Selkoe DJ. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 2011; 477 (7362): 107-110.
38- Billia F, Hauck L, Grothe D, et al. Parkinson-susceptibility gene DJ-1/PARK7 protects the murine heart from oxidative damage in vivo. Proc Natl Acad Sci U S A 2013; 110 (15): 6085-6090.
39- Li JQ, Tan L, Yu JT. The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener 2014; 9: 47.
40- Rassu M, Del Giudice MG, Sanna S, et al. Role of LRRK2 in the regulation of dopamine receptor trafficking. PLoS One 2017; 12 (6): e0179082.
41- Walker FO. Huntington's disease. Lancet 2007; 369 (9557): 218-228.
42- Bithell A, Johnson R, Buckley NJ. Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington's disease. Biochem Soc Trans 2009; 37 (Pt 6): 1270-1275.
43- Yamanaka K, Komine O. The multi-dimensional roles of astrocytes in ALS. Neurosci Res 2018; 126: 31-38.
44- Chen KW, Chen JA. Functional Roles of Long Non-coding RNAs in Motor Neuron Development and Disease. J Biomed Sci 2020; 27 (1): 38.
45- Di Pietro L, Lattanzi W, Bernardini C. Skeletal Muscle MicroRNAs as Key Players in the Pathogenesis of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2018; 19 (5).
46- Mushtaq G, Greig NH, Anwar F, et al. miRNAs as Circulating Biomarkers for Alzheimer's Disease and Parkinson's Disease. Med Chem 2016; 12 (3): 217-225.
47- Angelopoulou E, Paudel YN, Piperi C. miR-124 and Parkinson's disease: A biomarker with therapeutic potential. Pharmacol Res 2019; 150: 104515.
48- Kraus TFJ, Haider M, Spanner J, Steinmaurer M, Dietinger V, Kretzschmar HA. Altered Long Noncoding RNA Expression Precedes the Course of Parkinson's Disease-a Preliminary Report. Mol Neurobiol 2017; 54 (4): 2869-2877.
49- Hoss AG, Lagomarsino VN, Frank S, Hadzi TC, Myers RH, Latourelle JC. Study of plasma-derived miRNAs mimic differences in Huntington's disease brain. Mov Disord 2015; 30 (14): 1961-1964.
50- Riva P, Ratti A, Venturin M. The Long Non-Coding RNAs in Neurodegenerative Diseases: Novel Mechanisms of Pathogenesis. Curr Alzheimer Res 2016; 13 (11): 1219-1231.
51- Ricci C, Marzocchi C, Battistini S. MicroRNAs as Biomarkers in Amyotrophic Lateral Sclerosis. Cells 2018; 7 (11).
52- Ravnik-Glavač M, Glavač D. Circulating RNAs as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21 (5).
53- van den Berg MMJ, Krauskopf J, Ramaekers JG, Kleinjans JCS, Prickaerts J, Briedé JJ. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog Neurobiol 2020; 185: 101732.
54- Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current Status of microRNA-Based Therapeutic Approaches in Neurodegenerative Disorders. Cells 2020; 9 (7): 1698.
55- Titze-de-Almeida SS, Soto-Sánchez C, Fernandez E, Koprich JB, Brotchie JM, Titze-de-Almeida R. The Promise and Challenges of Developing miRNA-Based Therapeutics for Parkinson's Disease. Cells 2020; 9 (4): 841.
56- Velagapudi SP, Vummidi BR, Disney MD. Small molecule chemical probes of microRNA function. Curr Opin Chem Biol 2015; 24: 97-103.
57- Lee SWL, Paoletti C, Campisi M, et al. MicroRNA delivery through nanoparticles. J Control Release 2019; 313: 80-95.