The effects of opioid exposure during pregnancy on offspring: review article

Document Type : Analytic Review

Authors
1 Tarbiat Modares University
2 Semnan University of Medical Sciences
Abstract
Pregnancy, as one of the crucial periods in the mother and fetus life, is extremely vulnerable to impairments such as drugs abuse. Every year, a large number of drug-addicted newborns are born due to motherchr('39')s addiction. Drug abuse during pregnancy leads to appearance of several negative consequences for baby, such as an increased risk of preterm birth and congenital deficits. On the other hand, it affects the cognitive development of children like learning and memory, attention, language, problem solving skills and execuative functions by causing impairments in the central nervous system learning, memory and attention of the fetus and it also leads to cognitive and behavioral disorders such as depression, hyperactivity and anxiety. Opioids are lipophilic drug, whereas the placental membrane is a lipoprotein, diffused from maternal to fetal compartments easily. Prenatal exposure to opioids delays the growth and development of the brain and neural structures in the embryonic or postnatal period.

Considering the effect of maternal addiction on all aspects of health and susceptibility to addiction in later life of children, efforts to prevent, treatment and control drug abuse in pregnancy are essential. Therefore, in the present article, the effects of prenatal exposure to opioids on cognitive functions are reviewed.

Keywords


1. Merz F. United Nations Office on Drugs and Crime: World Drug Report 2017. 2017. SIRIUS–Zeitschrift für Strategische Analysen. 2018;2(1):85-6.
2. McQueen K, Murphy-Oikonen J. Neonatal abstinence syndrome. New England Journal of Medicine. 2016;375(25):2468-79.
3. Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science. 1997;278(5335):52-8.
4. Tita AT, Landon MB, Spong CY, Lai Y, Leveno KJ, Varner MW, et al. Timing of elective repeat cesarean delivery at term and neonatal outcomes. New England Journal of Medicine. 2009;360(2):111-20.
5. Clancy B, Finlay BL, Darlington RB, Anand K. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28(5):931-7.
6. West JR. Fetal alcohol-induced brain damage and the problem of determining temporal vulnerability: a review. Alcohol and drug research. 1987;7(5-6):423-41.
7. Jansson LM, Svikis D, Lee J, Paluzzi P, Rutigliano P, Hackerman F. Pregnancy and addiction A comprehensive care model. Journal of substance abuse treatment. 1996;13(4):321-9.
8. Hayes MJ, Brown MS. Epidemic of prescription opiate abuse and neonatal abstinence. Jama. 2012;307(18):1974-5.
9. Ostrea EM, Ostrea AR, Simpson PM. Mortality within the first 2 years in infants exposed to cocaine, opiate, or cannabinoid during gestation. Pediatrics. 1997;100(1):79-83.
10. Byrnes EM. Transgenerational consequences of adolescent morphine exposure in female rats: effects on anxiety-like behaviors and morphine sensitization in adult offspring. Psychopharmacology. 2005;182(4):537-44.
11. Vathy I. Effects of prenatal morphine and cocaine on postnatal behaviors and brain neurotransmitters. NIDA research monograph. 1995;158:88-114.
12. Sadraie SH, Kaka GR, Sahraei H, Dashtnavard H, Bahadoran H, Mofid M, et al. Effects of maternal oral administration of morphine sulfate on developing rat fetal cerebrum: a morphometrical evaluation. Brain Research. 2008;1245:36-40.
13. Ahmed MS, Schoof T, Zhou D-H, Quarles C. Kappa opioid receptors of human placental villi modulate acetylcholine release. Life sciences. 1989;45(25):2383-93.
14. Eriksson P, Rönnbäck L. Effects of prenatal morphine treatment of rats on mortality, bodyweight and analgesic response in the offspring. Drug and alcohol dependence. 1989;24(3):187-94.
15. Hutchings DE, Towey JP, Gorinson HS, Hunt HF. Methadone during pregnancy: assessment of behavioral effects in the rat offspring. The Journal of pharmacology and experimental therapeutics. 1979.
16. Byrnes EM, Vassoler FM. Modeling prenatal opioid exposure in animals: current findings and future directions. Frontiers in neuroendocrinology. 2018;51:1-13.
17. Pert CB, Snyder SH. Opiate receptor: demonstration in nervous tissue. Science. 1973;179(4077):1011-4.
18. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1984. Peptides. 1985;6(4):769-91.
19. Zhu Y, Hsu M-S, Pintar JE. Developmental expression of the μ, κ, and δ opioid receptor mRNAs in mouse. Journal of Neuroscience. 1998;18(7):2538-49.
20. Loh YP, Rius RA, Eikabes S, Bern W, Coscia CJ. Prenatal Expression of Pro-Opiomelanocortin mRNA, POMC-Derived Peptides, and µ-Opiate Receptors in the Mouse Embryo. Editors: Theresa NH Lee, Ph D Division of Preclinical Research National Institute on Drug Abuse. 1991:96.
21. Wang C, Pasulka P, Perry B, Pizzi W, Schnoll S. Effect of perinatal exposure to methadone on brain opioid and alpha 2-adrenergic receptors. Neurobehavioral toxicology and teratology. 1986;8(4):399-402.
22. Šlamberová R, Rimanóczy Á, Riley MA, Schindler CJ, Vathy I. Mu-opioid receptors in seizure-controlling brain structures are altered by prenatal morphine exposure and by male and female gonadal steroids in adult rats. Brain research bulletin. 2002;58(4):391-400.
23. Vathy I, Šlamberová R, Rimanóczy Á, Riley MA, Bar N. Autoradiographic evidence that prenatal morphine exposure sex-dependently alters μ-opioid receptor densities in brain regions that are involved in the control of drug abuse and other motivated behaviors. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2003;27(3):381-93.
24. Chiou L-C, Yeh G-C, Fan S-H, How C-H, Chuang K-C, Tao P-L. Prenatal morphine exposure decreases analgesia but not K+ channel activation. Neuroreport. 2003;14(2):239-42.
25. Slamberová R, Rimanóczy A, Bar N, Schindler CJ, Vathy I. Density of mu-opioid receptors in the hippocampus of adult male and female rats is altered by prenatal morphine exposure and gonadal hormone treatment. Hippocampus. 2003;13(4):461-71.
26. Blake AD, Bot G, Freeman JC, Reisine T. Differential opioid agonist regulation of the mouse μ opioid receptor. Journal of Biological Chemistry. 1997;272(2):782-90.
27. Rimano A, Vathy I. Prenatal exposure to morphine alters brain μ opioid receptor characteristics in rats. Brain research. 1995;690(2):245-8.
28. Nestler EJ, Aghajanian GK. Molecular and cellular basis of addiction. Science. 1997;278(5335):58-63.
29. Chiang Y-C, Hung T-W, Lee CW-S, Yan J-Y, Ho K. Enhancement of tolerance development to morphine in rats prenatally exposed to morphine, methadone, and buprenorphine. Journal of biomedical science. 2010;17(1):1-10.
30. De Vries TJ, Shippenberg TS. Neural systems underlying opiate addiction. Journal of Neuroscience. 2002;22(9):3321-5.
31. Kocherlakota P. Neonatal abstinence syndrome. Pediatrics. 2014;134(2):e547-e61.
32. Poole-Wilson PA, Langer GA. Effect of pH on ionic exchange and function in rat and rabbit myocardium. American Journal of Physiology-Legacy Content. 1975;229(3):570-81.
33. Lester BM, Lagasse LL. Children of addicted women. Journal of addictive diseases. 2010;29(2):259-76.
34. McEwen BS, Sapolsky RM. Stress and cognitive function. Current opinion in neurobiology. 1995;5(2):205-16.
35. Konijnenberg C, Melinder A. Prenatal exposure to methadone and buprenorphine: a review of the potential effects on cognitive development. Child Neuropsychology. 2011;17(5):495-519.
36. Nestler EJ. Molecular mechanisms of drug addiction [published erratum appears in J Neurosci 1992 Aug; 12 (8): following table of contents]. Journal of Neuroscience. 1992;12(7):2439-50.
37. Wise RA. Addictive drugs and brain stimulation reward. Annual review of neuroscience. 1996;19(1):319-40.
38. Gagin R, Kook N, Cohen E, Shavit Y. Prenatal morphine enhances morphine-conditioned place preference in adult rats. Pharmacology Biochemistry and Behavior. 1997;58(2):525-8.
39. Di Chiara G, North RA. Neurobiology of opiate abuse. Trends in pharmacological sciences. 1992;13:185-93.
40. Chiang YC, Hung TW, Ho IK. Development of sensitization to methamphetamine in offspring prenatally exposed to morphine, methadone and buprenorphine. Addiction biology. 2014;19(4):676-86.
41. Chasnoff IJ, Hatcher R, Burns WJ. Early growth patterns of methadone-addicted infants. American journal of diseases of children. 1980;134(11):1049-51.
42. Gorji HM, Rashidy-Pour A, Fathollahi Y. Effects of morphine dependence on the performance of rats in reference and working versions of the water maze. Physiology & behavior. 2008;93(3):622-7.
43. Levy M, Koren G. Obstetric and neonatal effects of drugs of abuse. Emergency medicine clinics of North America. 1990;8(3):633-52.
44. Strain EC, Bigelow GE, Liebson IA, Stitzer ML. Moderate-vs high-dose methadone in the treatment of opioid dependence: a randomized trial. Jama. 1999;281(11):1000-5.
45. Chiriboga CA, Brust JC, Bateman D, Hauser WA. Dose–response effect of fetal cocaine exposure on newborn neurologic function. Pediatrics. 1999;103(1):79-85.
46. Šlamberová R, Schindler CJ, Vathy I. Impact of maternal morphine and saline injections on behavioral responses to a cold water stressor in adult male and female progeny. Physiology & behavior. 2002;75(5):723-32.
47. Vathy I, Katay L. Effects of prenatal morphine on adult sexual behavior and brain catecholamines in rats. Developmental brain research. 1992;68(1):125-31.
48. De Zegher F, Van Den Berghe G, Devlieger H, Eggermont E, Veldhuis JD. Dopamine inhibits growth hormone and prolactin secretion in the human newborn. Pediatric research. 1993;34(5):642-5.
49. Kazemi M, Azarnia M, Sahraei H, Bahadoran H, Saeidabadi S. Oral morphine consumption delayed lateral ventricles and chroid plexus in Wistar rat embryos. Kowsar Medical Journal. 2009;14(2):77-82.
50. Moreno‐Manzano V, Rodríguez‐Jiménez FJ, García‐Roselló M, Laínez S, Erceg S, Calvo MT, et al. Activated spinal cord ependymal stem cells rescue neurological function. Stem cells. 2009;27(3):733-43.
51. Šlamberová R, Szilágyi B, Vathy I. Repeated morphine administration during pregnancy attenuates maternal behavior. Psychoneuroendocrinology. 2001;26(6):565-76.
52. Yim A, Miranda-Paiva C, Florio J, Oliveira C, Nasello A, Felicio LF. A comparative study of morphine treatment regimen prior to mating and during late pregnancy. Brain research bulletin. 2006;68(5):384-91.
53. Fleming AS, Walsh C. Neuropsychology of maternal behavior in the rat: c-fos expression during mother-litter interactions. Psychoneuroendocrinology. 1994;19(5-7):429-43.
54. Kinsley CH, Morse A, Zoumas C, Corl S, Billack B. Intracerebroventricular infusions of morphine, and blockade with naloxone, modify the olfactory preferences for pup odors in lactating rats. Brain Research Bulletin. 1995;37(1):103-7.
55. Hung C-J, Wu C-C, Chen W-Y, Chang C-Y, Kuan Y-H, Pan H-C, et al. Depression-like effect of prenatal buprenorphine exposure in rats. PLoS One. 2013;8(12):e82262.
56. Chen H-H, Chiang Y-C, Yuan ZF, Kuo C-C, Lai M-D, Hung T-W. Buprenorphine, methadone, and morphine treatment during pregnancy: behavioral effects on the offspring in rats. Neuropsychiatric disease and treatment. 2015;11:609.
57. Klausz B, Pintér O, Sobor M, Gyarmati Z, Fürst Z, Tímár J, et al. Changes in adaptability following perinatal morphine exposure in juvenile and adult rats. European journal of pharmacology. 2011;654(2):166-72.
58. Whitaker-Azmitia PM, Lauder JM, Shemmer A, Azmitia EC. Postnatal changes in serotonin1 receptors following prenatal alterations in serotonin levels: further evidence for functional fetal serotonin1 receptors. Developmental Brain Research. 1987;33(2):285-9.
59. Laborie C, Dutriez-Casteloot I, Montel V, Dickès-Coopman A, Lesage J, Vieau D. Prenatal morphine exposure affects sympathoadrenal axis activity and serotonin metabolism in adult male rats both under basal conditions and after an ether inhalation stress. Neuroscience letters. 2005;381(3):211-6.
60. Lesage J, Grino M, Bernet F, Dutriez-Casteloot I, Montel V, Dupouy J. Consequences of prenatal morphine exposure on the hypothalamo-pituitary-adrenal axis in the newborn rat: effect of maternal adrenalectomy. Journal of neuroendocrinology. 1998;10(5):331-42.
61. Rimanóczy Á, Šlamberová R, Riley MA, Vathy I. Adrenocorticotropin stress response but not glucocorticoid-negative feedback is altered by prenatal morphine exposure in adult male rats. Neuroendocrinology. 2003;78(6):312-20.
62. Chen F, Zhou L, Bai Y, Zhou R, Chen L. Hypothalamic-pituitary-adrenal axis hyperactivity accounts for anxiety-and depression-like behaviors in rats perinatally exposed to bisphenol A. Journal of biomedical research. 2015;29(3):250.
63. Chrousos GP, Gold PW. The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis. Jama. 1992;267(9):1244-52.
64. Holsboer F, Ising M. Stress hormone regulation: biological role and translation into therapy. Annual review of psychology. 2010;61:81-109.
65. Dronkers N, Pinker S, Damasio A. Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Sciences. New York: McGraw-Hill; 2000.
66. Lester BM, LaGasse LL, Seifer R. Cocaine exposure and children: the meaning of subtle effects. American Association for the Advancement of Science; 1998.
67. Eyler FD, Behnke M. Early development of infants exposed to drugs prenatally. Clinics in perinatology. 1999;26(1):107-50.
68. Sirnes E, Griffiths ST, Aukland SM, Eide GE, Elgen IB, Gundersen H. Functional MRI in prenatally opioid-exposed children during a working memory-selective attention task. Neurotoxicology and teratology. 2018;66:46-54.
69. Konijnenberg C, Melinder A. Executive function in preschool children prenatally exposed to methadone or buprenorphine. Child Neuropsychology. 2015;21(5):570-85.
70. Sheinkopf SJ, Lester BM, Sanes JN, Eliassen JC, Hutchison ER, Seifer R, et al. Functional MRI and response inhibition in children exposed to cocaine in utero. Developmental neuroscience. 2009;31(1-2):159-66.
71. Schweitzer JB, Riggins T, Liang X, Gallen C, Kurup PK, Ross TJ, et al. Prenatal drug exposure to illicit drugs alters working memory-related brain activity and underlying network properties in adolescence. Neurotoxicology and teratology. 2015;48:69-77.
72. McCarthy H, Skokauskas N, Frodl T. Identifying a consistent pattern of neural function in attention deficit hyperactivity disorder: a meta-analysis. Psychological medicine. 2014;44(4):869.
73. Cortese S, Kelly C, Chabernaud C, Proal E, Di Martino A, Milham MP, et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. American Journal of Psychiatry. 2012;169(10):1038-55.
74. Canli T, Cook RG, Miczek KA. Opiate antagonists enhance the working memory of rats in the radial maze. Pharmacology Biochemistry and Behavior. 1990;36(3):521-5.
75. Gallagher M, Bostock E, King R. Effects of opiate antagonists on spatial memory in young and aged rats. Behavioral and neural biology. 1985;44(3):374-85.
76. Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157(1):163-86.
77. Šlamberová R, Schindler CJ, Pometlová M, Urkuti C, Purow-Sokol JA, Vathy I. Prenatal morphine exposure differentially alters learning and memory in male and female rats. Physiology & behavior. 2001;73(1-2):93-103.
78. Nasiraei-Moghadam S, Sherafat MA, Safari M-S, Moradi F, Ahmadiani A, Dargahi L. Reversal of prenatal morphine exposure-induced memory deficit in male but not female rats. Journal of Molecular Neuroscience. 2013;50(1):58-69.
79. Ahmadalipour A, Ghodrati-Jaldbakhan S, Samaei SA, Rashidy-Pour A. Deleterious effects of prenatal exposure to morphine on the spatial learning and hippocampal BDNF and long-term potentiation in juvenile rats: beneficial influences of postnatal treadmill exercise and enriched environment. Neurobiology of learning and memory. 2018;147:54-64.
80. Sarkaki A, Assaei R, Motamedi F, Badavi M, Pajouhi N. Effect of parental morphine addiction on hippocampal long-term potentiation in rats offspring. Behavioural brain research. 2008;186(1):72-7.
81. Villarreal DM, Derrick B, Vathy I. Prenatal morphine exposure attenuates the maintenance of late LTP in lateral perforant path projections to the dentate gyrus and the CA3 region in vivo. Journal of neurophysiology. 2008;99(3):1235-42.
82. Niu L, Cao B, Zhu H, Mei B, Wang M, Yang Y, et al. Impaired in vivo synaptic plasticity in dentate gyrus and spatial memory in juvenile rats induced by prenatal morphine exposure. Hippocampus. 2009;19(7):649-57.
83. Ahmadalipour A, Sadeghzadeh J, Vafaei AA, Bandegi AR, Mohammadkhani R, Rashidy-Pour A. Effects of environmental enrichment on behavioral deficits and alterations in hippocampal BDNF induced by prenatal exposure to morphine in juvenile rats. Neuroscience. 2015;305:372-83.
84. Schrott LM, La'Tonya MF, Serrano PA. Prenatal opiate exposure impairs radial arm maze performance and reduces levels of BDNF precursor following training. Brain research. 2008;1198:132-40.
85. Yang SN, Huang LT, Wang CL, Chen WF, Yang CH, Lin SZ, et al. Prenatal administration of morphine decreases CREBSerine‐133 phosphorylation and synaptic plasticity range mediated by glutamatergic transmission in the hippocampal CA1 area of cognitive‐deficient rat offspring. Hippocampus. 2003;13(8):915-21.
86. Ross EJ, Graham DL, Money KM, Stanwood GD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology. 2015;40(1):61-87.
87. Walhovd KB, Moe V, Slinning K, Due-Tønnessen P, Bjørnerud A, Dale AM, et al. Volumetric cerebral characteristics of children exposed to opiates and other substances in utero. Neuroimage. 2007;36(4):1331-44.
88. Sanchez ES, Bigbee JW, Fobbs W, Robinson SE, Sato‐Bigbee C. Opioid addiction and pregnancy: perinatal exposure to buprenorphine affects myelination in the developing brain. Glia. 2008;56(9):1017-27.
89. Ricalde AA, Hammer Jr RP. Perinatal opiate treatment delays growth of cortical dendrites. Neuroscience letters. 1990;115(2-3):137-43.
90. Hol T, Niesink M, Van Ree J, Spruijt B. Prenatal exposure to morphine affects juvenile play behavior and adult social behavior in rats. Pharmacology Biochemistry and Behavior. 1996;55(4):615-8.
91. Davis W, Lin C. Prenatal morphine effects on survival and behavior of rat offspring. Research communications in chemical pathology and pharmacology. 1972;3(2):205-14.
92. Andersen SL. Trajectories of brain development: point of vulnerability or window of opportunity? Neuroscience & Biobehavioral Reviews. 2003;27(1-2):3-18.
93. Thompson BL, Levitt P, Stanwood GD. Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nature Reviews Neuroscience. 2009;10(4):303-12.
94. Meier E, Hertz L, Schousboe A. Neurotransmitters as developmental signals. Neurochemistry international. 1991;19(1-2):1-15.
95. Arnsten AF. Genetics of childhood disorders: XVIII. ADHD, Part 2: Norepinephrine has a critical modulatory influence on prefrontal cortical function. Journal of the American Academy of Child & Adolescent Psychiatry. 2000.
96. Robinson SE, Maher JR, Wallace MJ, Kunko PM. Perinatal methadone exposure affects dopamine, norepinephrine, and serotonin in the weanling rat. Neurotoxicology and teratology. 1997;19(4):295-303.
97. Squire LR. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychological review. 1992;99(2):195.
98. Hnatczuk O, Vathy I. Expression of preenkephalin mRNA in adult male and female rats treated prenatally with morphine. Soc Neurosci Abst. 1997;23:2148.
99. Johnson S, North R. Opioids excite dopamine neurons by hyperpolarization of local interneurons. Journal of neuroscience. 1992;12(2):483-8.
100. Todd RD. Neural development is regulated by classical neurotransmitters: dopamine D2 receptor stimulation enhances neurite outgrowth. Biological psychiatry. 1992;31(8):794-807.
101. Nieoullon A. Dopamine and the regulation of cognition and attention. Progress in neurobiology. 2002;67(1):53-83.
102. Diamond A. A model system for studying the role of dopamine in the prefrontal cortex during early development in humans: Early and continuously treated phenylketonuria. Handbook of developmental cognitive neuroscience. 2001:433-72.
103. Herlenius E, Lagercrantz H. Development of neurotransmitter systems during critical periods. Experimental neurology. 2004;190:8-21.
104. Zarrindast M-R, Rezayof A, Sahraei H, Haeri-Rohani A, Rassouli Y. Involvement of dopamine D1 receptors of the central amygdala on the acquisition and expression of morphine-induced place preference in rat. Brain research. 2003;965(1-2):212-21.
105. DiNieri JA, Wang X, Szutorisz H, Spano SM, Kaur J, Casaccia P, et al. Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biological psychiatry. 2011;70(8):763-9.
106. McGinty JF, Ford DH. Effects of prenatal methadone on rat brain catecholamines. Developmental neuroscience. 1980;3(4-6):224-34.
107. Lesage J, Bernet F, Montel V, Dupouy J. Effects of prenatal morphine on hypothalamic metabolism of neurotransmitters and gonadal and adrenal activities, during the early postnatal period in the rat. Neurochemical research. 1996;21(6):723-32.
108. De Montis GM, Devoto P, Angioi RM, Curreli V, Tagliamonte A. In utero exposure to methadone produces a stable decrease of the cortex 5-HT transport system in rats. European journal of pharmacology. 1983;90(1):57-63.
109. Lorden JF, Rickert EJ, Berry DW. Forebrain monoamines and associative learning: I. Latent inhibition and conditioned inhibition. Behavioural Brain Research. 1983;9(2):181-99.
110. Wenk G, Hughey D, Boundy V, Kim A, Walker L, Olton D. Neurotransmitters and memory: role of cholinergic, serotonergic, and noradrenergic systems. Behavioral neuroscience. 1987;101(3):325.
111. Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Progress in neurobiology. 2005;76(2):99-125.
112. Miladi-Gorji H, Rashidy-Pour A, Fathollahi Y. Anxiety profile in morphine-dependent and withdrawn rats: effect of voluntary exercise. Physiology & behavior. 2012;105(2):195-202.
113. Vaynman S, Ying Z, Gomez‐Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. European Journal of neuroscience. 2004;20(10):2580-90.
114. Boersma GJ, Lee RS, Cordner ZA, Ewald ER, Purcell RH, Moghadam AA, et al. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics. 2014;9(3):437-47.
115. Johnston AN, Rose SP. Memory consolidation in day-old chicks requires BDNF but not NGF or NT-3; an antisense study. Molecular brain research. 2001;88(1-2):26-36.
116. Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences. 1995;92(19):8856-60.
117. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller F-J, Loring JF, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proceedings of the National Academy of Sciences. 2009;106(32):13594-9.
118. Olofsdotter K, Lindvall O, Asztely F. Increased synaptic inhibition in dentate gyrus of mice with reduced levels of endogenous brain-derived neurotrophic factor. Neuroscience. 2000;101(3):531-9.
119. Bekinschtein P, Oomen CA, Saksida LM, Bussey TJ, editors. Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Seminars in cell & developmental biology; 2011: Elsevier.
120. Van Praag H, Kempermann G, Gage FH. Neural consequences of enviromental enrichment. Nature Reviews Neuroscience. 2000;1(3):191-8.
121. Hebb DO. The effects of early experience on problem-solving at maturity. American Psychologist. 1947;2:306-7.
122. Mohammed AH, Zhu S, Darmopil S, Hjerling-Leffler J, Ernfors P, Winblad B, et al. Environmental enrichment and the brain. Progress in brain research. 2002;138:109-33.
123. Renner MJ, Rosenzweig MR. Enriched and impoverished environments: Effects on brain and behavior: Springer; 1987.
124. Falkenberg T, Mohammed AK, Henriksson B, Persson H, Winblad B, Lindefors N. Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neuroscience letters. 1992;138(1):153-6.
125. Sun H, Zhang J, Zhang L, Liu H, Zhu H, Yang Y. Environmental enrichment influences BDNF and NR1 levels in the hippocampus and restores cognitive impairment in chronic cerebral hypoperfused rats. Current neurovascular research. 2010;7(4):268-80.
126. Bakos J, Hlavacova N, Rajman M, Ondicova K, Koros C, Kitraki E, et al. Enriched environment influences hormonal status and hippocampal brain derived neurotrophic factor in a sex dependent manner. Neuroscience. 2009;164(2):788-97.
127. Klein SL, Lambert KG, Durr D, Schaefer T, Waring RE. Influence of environmental enrichment and sex on predator stress response in rats. Physiology & behavior. 1994;56(2):291-7.
128. Martı́nez-Cué C, Baamonde C, Lumbreras M, Paz J, Davisson MT, Schmidt C, et al. Differential effects of environmental enrichment on behavior and learning of male and female Ts65Dn mice, a model for Down syndrome. Behavioural brain research. 2002;134(1-2):185-200.
129. Peña Y, Prunell M, Dimitsantos V, Nadal R, Escorihuela RM. Environmental enrichment effects in social investigation in rats are gender dependent. Behavioural Brain Research. 2006;174(1):181-7.
130. Elliott BM, Grunberg NE. Effects of social and physical enrichment on open field activity differ in male and female Sprague–Dawley rats. Behavioural brain research. 2005;165(2):187-96.
131. Wagner AK, Kline AE, Sokoloski J, Zafonte RD, Capulong E, Dixon CE. Intervention with environmental enrichment after experimental brain trauma enhances cognitive recovery in male but not female rats. Neuroscience letters. 2002;334(3):165-8.
132. Ahmadalipour A, Rashidy-Pour A. Effects of treadmill running exercise during the adolescent period of life on behavioral deficits in juvenile rats induced by prenatal morphine exposure. Physiology & behavior. 2015;139:26-33.
133. Ploughman M, Granter-Button S, Chernenko G, Attwood Z, Tucker BA, Mearow KM, et al. Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia. Brain research. 2007;1150:207-16.
134. Van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. Journal of Neuroscience. 2005;25(38):8680-5.
135. Creer DJ, Romberg C, Saksida LM, van Praag H, Bussey TJ. Running enhances spatial pattern separation in mice. Proceedings of the national academy of sciences. 2010;107(5):2367-72.
136. Anderson BJ, Rapp DN, Baek DH, McCloskey DP, Coburn-Litvak PS, Robinson JK. Exercise influences spatial learning in the radial arm maze. Physiology & behavior. 2000;70(5):425-9.
137. Nasiraei-Moghadam S, Sahraei H, Bahadoran H, Sadooghi M, Salimi SH, Kaka GR, et al. Effects of maternal oral morphine consumption on neural tube development in Wistar rats. Developmental Brain Research. 2005;159(1):12-7.