1. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases 2020;20(5):533-4
2. Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet 2020;395(10223):514-23
3. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of autoimmunity 2020:102433
4. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002;100(7):2292-302
5. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). Statpearls [internet]: StatPearls Publishing; 2020.
6. Tavakoli A, Vahdat K, Keshavarz M. Novel coronavirus disease 2019 (COVID-19): an emerging infectious disease in the 21st century. ISMJ 2020;22(6):432-50
7. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature communications 2020;11(1):1-12
8. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses: Springer; 2015. p. 1-23
9. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003;300(5626):1763-7
10. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of medical virology 2020;92(4):418-23
11. Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene reports 2020:100682
12. Li X, Zhang L, Duan Y, Yu J, Wang L, Yang K, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020
13. Kandeel M, Altaher A, Alnazawi M. Molecular dynamics and inhibition of MERS CoV papain-like protease by small molecule imidazole and aminopurine derivatives. Letters in Drug Design & Discovery 2019;16(5):584-91
14. Li Y-H, Hu C-Y, Wu N-P, Yao H-P, Li L-J. Molecular characteristics, functions, and related pathogenicity of MERS-CoV proteins. Engineering 2019;5(5):940-7
15. Zumla A, Chan JF, Azhar EI, Hui DS, Yuen K-Y. Coronaviruses—drug discovery and therapeutic options. Nature reviews Drug discovery 2016;15(5):327-47
16. Ullrich, S., & Nitsche, C. (2020). The SARS-CoV-2 Main Protease as Drug Target. Bioorganic & Medicinal Chemistry Letters, 127377. doi:10.1016/j.bmcl.2020.127377
17. Stoermer M. Homology Models of Coronavirus 2019-nCoV 3CLpro Protease. chemrxiv 2020
18. Zhang L, Lin D, Kusov Y, Nian Y, Ma Q, Wang J, et al. α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. Journal of medicinal chemistry 2020
19. Dai W, Zhang B, Jiang XM, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020;368(6497):1331-1335. doi:10.1126/science.abb4489
20. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020;368(6489):409-12
21. Cui W, Yang K and Yang H (2020)Recent Progress in the DrugDevelopment Targeting SARS-CoV-2Main Protease as Treatment forCOVID-19.Front. Mol. Biosci. 7:616341.doi: 10.3389/fmolb.2020.616341
22. Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., et al. (2020a). Structure ofM(pro) from SARS-CoV-2 and discovery of its inhibitors.Nature582, 289–293.doi: 10.1038/s41586-020-2223-y .
23. Lobo-Galo, N., Terrazas-López, M., Martínez-Martínez, A., & Díaz-Sánchez, Á. G. (2020). FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication. Journal of Biomolecular Structure and Dynamics, 1–12. doi:10.1080/07391102.2020.1764393
24. Jin Z, Zhao Y, Sun Y, Zhang B, Wang H, Wu Y, et al. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature structural & molecular biology 2020;27(6):529-32
25. Yamamoto N, Yang R, Yoshinaka Y, Amari S, Nakano T, Cinatl J, et al. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochemical and biophysical research communications 2004;318(3):719-25
26. Xu Z, Peng C, Shi Y, Zhu Z, Mu K, Wang X, et al. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. BioRxiv 2020
27. Yamamoto N, Matsuyama S, Hoshino T, Yamamoto N. Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. bioRxiv; 2020. DOI: 10.1101/2020.04.06.026476.
28. Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., et al. (2020). A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19.N. Engl. J. Med.382, 1787–1799. doi: 10.1056/NEJMoa2001282
29. Moyle G, Back D. Principles and practice of HIV‐protease inhibitor pharmacoenhancement. HIV medicine 2001;2(2):105-13
30. Walmsley, S., Bernstein, B., King, M., Arribas, J., Beall, G., Ruane,P., et al. (2002).Lopinavir–ritonavir vs. nelfinavir for the initial treatment of HIV infection.N.Engl. J. Med.346, 2039–2046. doi: 10.1056/NEJMoa012354
31. Chu C, Cheng V, Hung I, Wong M, Chan K, Chan K, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004;59(3):252-6
32. Li, Y., Xie, Z., Lin, W., Cai, W., Wen, C., Guan, Y., et al.(2020). Efficacy and safety of lopinavir/ritonavir or arbidol inadult patients with mild/moderate COVID-19: an exploratoryrandomized controlled trial.Med1, 1–9. doi: 10.1016/j.medj.2020.04.001
33. Liu X, Wang X-J. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. Journal of Genetics and Genomics 2020;47(2):119
34. Sekhar T. Virtual Screening based prediction of potential drugs for COVID-19. Preprints; 2020.
35. Wang J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. Journal of Chemical Information and Modeling 2020
36. Chen YW, Yiu C-PB, Wong K-Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research 2020;9
37. Chen YW, Yiu C-PB, Wong K-Y. protease (3CL) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. 2020
38. Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Computational and structural biotechnology journal 2020
39. Anas Shamsi TM, Anwar S, AlAjmi MF, Hussain A, Rehman MT, Islam A, et al. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. Bioscience Reports 2020;40(6)