References:
1. Jagust W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat Rev Neurosci 2018; 19(11): 687–700.
2. Mayes AR, Roberts N. Theories of episodic memory. Philos Trans R SocLond B BiolSci 2001; 356(1413):1395-408.
3. Baarendse PJJ, Grootheest GV, Jansen RF, Pieneman AW, Ogren SO, Verhage M, Stiedl O. Differential involvement of the dorsal hippocampus in passive avoidance in C57bl/6J and DBA/2J mice. Hippocampus 2008; 18(1): 11-9.
4. Burwell RD, Saddoris MP, Bucci DJ, Wiig KA. Corticohippocampal contributions to spatial and contextual learning. J Neurosci 2004; 24(15): 3826-36.
5. McClelland JL, McNaughton BL, O'Reilly RC.Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory.Psychol Rev 1995; 102(3): 419-57.
6. Skibo GG, Davies HA, Rusakov DA, Stewart MG, Schachner M. Increased immunogoldlabelling of neural cell adhesion molecule isoforms in synaptic active zones of the chick striatum 5-6 hours after one-trialpassiveavoidance training. Neuroscience. 1998; 82(1): 1-5.
7. Alvarez P, Squire LR.Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci U S A 1994; 91(15): 7041-5.
8. Warrington EK, McCarthy RA.The fractionation of retrograde amnesia. Brain Cogn. 1988; 7(2): 184-200.
9. Roy DS, Arons A, Mitchell TI, Pignatelli M, Ryan TJ, Tonegawa S.Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease. Nature. 2016; 531(7595): 508-12.
10. Olton DS. Shock-motivated avoidance and the analysis of behavior. Psychol Bull 1973; 79: 243–51.
11. Black AH, Nadel L, O’Keefe J. Hippocampal function in avoidance learning and punishment. Psychol Bull 1977; 84: 1107–29.
12. Pang KC, Jiao X, Sinha S, Beck KD, Servatius RJ. Damage of GABAergic neurons in the medial septum impairs spatial working memory and extinction of active avoidance: effects on proactive interference. Hippocampus 2011; 21: 835–46.
13. Reinhard Schliebs, Volker Bigl Animal Models to Produce Cortical Cholinergic Dysfunction. In: Methods in Neurosciences. Edited by Perez-Polo JR. 1996; p: 275-9.
14. Mundy WR, Tilson HA Neurotoxic effects of colchicines. Neurotoxicology 1990; 11(3): 539-47.
15. Zhang Xiu-Li, An Li-Jia, Bao Yong-Ming, Wang Jing-Yun, Bo Jiang. D-galactose administration induces memory loss and energy metabolism disturbance in mice: protective effects of catalpol. Food ChemToxicol 2008; 46(8): 2888-94.
16. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, Elsevier.2007.
11. Babaei P, Anokhin KV, Dolgov N, Sudakov KV. Characteristics of c-fos gene expression in the brains of rats with different investigative and defensive behaviors. NeurosciBehavPhysiol2001 ; 31(6): 583-8.
18. Eijkenboom M, Blokland A, van der Staay FJ.Modelling cognitive dysfunctions with bilateral injections of ibotenic acid into the rat entorhinal cortex. Neuroscience. 2000; 101(1): 27-39.
19. Bornstein RF, Rossner SC, Hill EL. Retest reliability of scores on objective and projective measures of dependency: relationship to life events and interest interval. J Pers Assess 1994; 62(3): 398-415.
20. NakamuraS, MurayamaN, NoshitaT, Katsuragi R, Ohno T. Cognitive dysfunction induced by sequential injection of amyloid-beta and ibotenate into the bilateral hippocampus; protection by memantine and MK-801. Eur J Pharmacol.2006; 548(1-3): 115-22.
21. Hepler DJ, Wenk GL, Cribbs BL, Olton DS, Coyle JT. Memory impairments following basal forebrain lesions. Brain Res 1985; 346(1): 8-14.
22. Kessler J, Markowitsch HJ, Sigg G. Memory related role of the posterior cholinergic system. Int J Neurosci 1986; 30(1-2): 101-19.
23. Dokla CP, Parker SC, Thal LJ. Tetrahydroaminoacridine facilitates passive avoidance learning in rats with nucleus basalismagnocellularis lesions. Neuropharmacology 1989; 28(11): 1279-82.
24. Sutherland RJ, Whishaw IQ, Kolb B. A behavioural analysis of spatial localization following electrolytic, kainate- or colchicine-induced damage to the hippocampal formation in the rat. Behav Brain Res 1983; 7(2): 133-53.
25. Xavier GF, Costa VC. Dentate gyrus and spatial behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(5): 762-73.
26. Raghavendra M, Maiti R, Kumar S, Acharya S. Role of aqueous extract of Azadirachtaindica leaves in an experimental model of Alzheimer's disease in rats. Int J Appl Basic Med Res 2013 ; 3(1): 37-47.
27. Richmond MA, Yee BK, Pouzet B, Veenman L, Rawlins JN, Feldon J, et al. Dissociating context and space within the hippocampus: effects of complete, dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning. Behav. Neurosci. 1999; 113: 1189–1203.
28. Gallo M, Ballesteros MA, Molero A, Morón I. Taste Aversion Learning as a Tool for the Study of Hippocampal and Non-Hippocampal Brain Memory Circuits Regulating Diet Selection. Nutr Neurosci 1999; 2(5): 277-302.
29. Reilly S, Bornovalova MA.. Conditioned taste aversion and amygdala lesions in the rat: A critical review. Neurosci Biobehav Rev 2005; 29: 1067 –88.
30. Gallo M, Rolda´n G, Bures J. Differential involvement of gustatory insular cortex and amygdala in the acquisition and retrieval of conditioned taste aversion in rats. Behav Brain Res 1992; 52: 91 –7.
31. Roldan G, Bures J.Tetrodotoxin blockade of amygdala overlapping with poisoning impairs acquisition of conditioned taste aversion in rats. Behav Brain Res 1994; 65(2): 213-9.
32. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci 2000; 23: 155-84.
33. McGaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 2004; 27: 1-28.