Protocol for Recovery of Measles Virus from Intact/Recombinant Antigenomic DNA

Document Type : Original Research

Authors
1 Baghyatollah Medical Sciences University
2 Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
3 Baghyatollah Medical Sciences University,Chemical Injuries Research Center
Abstract
Measles virus, negative-strand RNA viruses, has been known as an ideal candidate in oncolytic virotherapy. Recombinant measles virus can encode genes of interests for reaching several aims. Replication efficiency of oncolytic virus in tumoral cells is a key parameter in efficient tumor eradication. Products of P gene (P/V/C) support measle virus to circumvent IFN 1 as the main response of innate immune system against viruses. But vaccine strains used in oncolytic therapy studies comprise several mutations in their P gene sequences. These mutations affect replication efficacy which cause attenuation of measles strains applicable in vaccination. So, arming vaccine strains with the wild type P gene is helpful to reach high virus titer. Here at this study, we have expanded a protocol with details for engineering and efficient recovery of measles virus for different aims.

Keywords

Subjects


References
[1] Li H, Peng K-W, Russell SJ. Oncolytic measles virus encoding thyroidal sodium iodide symporter for squamous cell cancer of the head and neck radiovirotherapy. Hum Gene Ther 2012;23:295–301. doi:10.1089/hum.2011.128.
[2] Cattaneo R, Miest T, Shashkova E V., Barry MA. Reprogrammed viruses as cancer therapeutics: Targeted, armed and shielded. Nat Rev Microbiol 2008;6:529–40. doi:10.1038/nrmicro1927.
[3] Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther 2007;15:651–9. doi:10.1038/sj.mt.6300108.
[4] Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer 2014;14:559–67. doi:10.1038/nrc3770.
[5] Pfaller CK, Cattaneo R, Schnell MJ. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology 2015;479–480:331–44. doi:10.1016/j.virol.2015.01.029.
[6] Msaouel P, Opyrchal M, Dispenzieri A, Peng KW, Federspiel MJ, Russell SJ, et al. Clinical Trials with Oncolytic Measles Virus: Current Status and Future Prospects. Curr Cancer Drug Targets 2018;18:177–87. doi:10.2174/1568009617666170222125035.
[7] Heinzerling L, Künzi V, Oberholzer PA, Kündig T, Naim H, Dummer R. Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood 2005;106:2287–94. doi:10.1182/blood-2004-11-4558.
[8] McDonald CJ, Erlichman C, Ingle JN, Rosales GA, Allen C, Greiner SM, et al. A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer. Breast Cancer Res Treat 2006;99:177–84. doi:10.1007/s10549-006-9200-5.
[9] Blechacz B, Splinter PL, Greiner S, Myers R, Peng K-W, Federspiel MJ, et al. Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. Hepatology 2006;44:1465–77. doi:10.1002/hep.21437.
[10] Pidelaserra-Martí G, Engeland CE. Mechanisms of measles virus oncolytic immunotherapy. Cytokine Growth Factor Rev 2020;56:28–38. doi:10.1016/j.cytogfr.2020.07.009.
[11] BALTIMORE D. Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of RNA Tumour Viruses. Nature 1970;226:1209–11. doi:10.1038/2261209a0.
[12] Brunel J, Chopy D, Dosnon M, Bloyet L-M, Devaux P, Urzua E, et al. Sequence of events in measles virus replication: role of phosphoprotein-nucleocapsid interactions. J Virol 2014;88:10851–63. doi:10.1128/JVI.00664-14.
[13] Navaratnarajah CK, Generous AR, Yousaf I, Cattaneo R. Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. J Biol Chem 2020;295:2771–86. doi:10.1074/jbc.REV119.009961.
[14] Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008;133:775–87. doi:10.1016/j.cell.2008.05.009.
[15] Palosaari H, Parisien J-P, Rodriguez JJ, Ulane CM, Horvath CM. STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 2003;77:7635–44. doi:10.1128/jvi.77.13.7635-7644.2003.
[16] Devaux P, von Messling V, Songsungthong W, Springfeld C, Cattaneo R. Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 2007;360:72–83. doi:10.1016/j.virol.2006.09.049.
[17] Desfosses A, Milles S, Jensen MR, Guseva S, Colletier J-P, Maurin D, et al. Assembly and cryo-EM structures of RNA-specific measles virus nucleocapsids provide mechanistic insight into paramyxoviral replication. Proc Natl Acad Sci 2019;116:4256 LP-4264. doi:10.1073/pnas.1816417116.
[18] Du Pont V, Jiang Y, Plemper RK. Bipartite interface of the measles virus phosphoprotein X domain with the large polymerase protein regulates viral polymerase dynamics. PLoS Pathog 2019;15:e1007995. doi:10.1371/journal.ppat.1007995.
[19] Donohue RC, Pfaller CK, Cattaneo R. Cyclical adaptation of measles virus quasispecies to epithelial and lymphocytic cells: To V, or not to V. PLOS Pathog 2019;15:e1007605. doi:10.1371/journal.ppat.1007605.
[20] D Griffin, R Lamb, M Martin, B Roizman SS. No Title. 2001.
[21] Shaffer JA, Bellini WJ, Rota PA. The C protein of measles virus inhibits the type I interferon response. Virology 2003. doi:10.1016/S0042-6822(03)00537-3.
[22] Takeuchi K, Kadota S, Takeda M, Miyajima N, Nagata K. Measles virus V protein blocks interferon (IFN)-alpha/beta but not IFN-gamma signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett 2003;545:177–82. doi:10.1016/s0014-5793(03)00528-3.
[23] Alizadeh R, Ghanei M, Arashkia A, Dorostkar R, Azadmanesh K. Generation of recombinant measles virus containing the wild-type P gene to improve its oncolytic efficiency. Microb Pathog 2019;135:103631. doi:10.1016/j.micpath.2019.103631.
[24] Ohno S, Ono N, Takeda M, Takeuchi K, Yanagi Y. Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J Gen Virol 2004;85:2991–9. doi:10.1099/vir.0.80308-0.
[25] Naniche D, Yeh A, Eto D, Manchester M, Friedman RM, Oldstone MB. Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of Alpha/Beta interferon production. J Virol 2000;74:7478–84. doi:10.1128/jvi.74.16.7478-7484.2000.
[26] Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dötsch C, et al. Rescue of measles viruses from cloned DNA. EMBO J 1995;14:5773–84.
[27] Parks CL, Lerch RA, Walpita P, Sidhu MS, Udem SA. Enhanced measles virus cDNA rescue and gene expression after heat shock. J Virol 1999;73:3560–6. doi:10.1128/JVI.73.5.3560-3566.1999.
[28] Jiang Y, Qin Y, Chen M. Host-Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity. Viruses 2016;8. doi:10.3390/v8110308.
[29] Kärber G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 1931;162:480–3. doi:10.1007/BF01863914.