References
[1] Li H, Peng K-W, Russell SJ. Oncolytic measles virus encoding thyroidal sodium iodide symporter for squamous cell cancer of the head and neck radiovirotherapy. Hum Gene Ther 2012;23:295–301. doi:10.1089/hum.2011.128.
[2] Cattaneo R, Miest T, Shashkova E V., Barry MA. Reprogrammed viruses as cancer therapeutics: Targeted, armed and shielded. Nat Rev Microbiol 2008;6:529–40. doi:10.1038/nrmicro1927.
[3] Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther 2007;15:651–9. doi:10.1038/sj.mt.6300108.
[4] Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer 2014;14:559–67. doi:10.1038/nrc3770.
[5] Pfaller CK, Cattaneo R, Schnell MJ. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology 2015;479–480:331–44. doi:10.1016/j.virol.2015.01.029.
[6] Msaouel P, Opyrchal M, Dispenzieri A, Peng KW, Federspiel MJ, Russell SJ, et al. Clinical Trials with Oncolytic Measles Virus: Current Status and Future Prospects. Curr Cancer Drug Targets 2018;18:177–87. doi:10.2174/1568009617666170222125035.
[7] Heinzerling L, Künzi V, Oberholzer PA, Kündig T, Naim H, Dummer R. Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood 2005;106:2287–94. doi:10.1182/blood-2004-11-4558.
[8] McDonald CJ, Erlichman C, Ingle JN, Rosales GA, Allen C, Greiner SM, et al. A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer. Breast Cancer Res Treat 2006;99:177–84. doi:10.1007/s10549-006-9200-5.
[9] Blechacz B, Splinter PL, Greiner S, Myers R, Peng K-W, Federspiel MJ, et al. Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. Hepatology 2006;44:1465–77. doi:10.1002/hep.21437.
[10] Pidelaserra-Martí G, Engeland CE. Mechanisms of measles virus oncolytic immunotherapy. Cytokine Growth Factor Rev 2020;56:28–38. doi:10.1016/j.cytogfr.2020.07.009.
[11] BALTIMORE D. Viral RNA-dependent DNA Polymerase: RNA-dependent DNA Polymerase in Virions of RNA Tumour Viruses. Nature 1970;226:1209–11. doi:10.1038/2261209a0.
[12] Brunel J, Chopy D, Dosnon M, Bloyet L-M, Devaux P, Urzua E, et al. Sequence of events in measles virus replication: role of phosphoprotein-nucleocapsid interactions. J Virol 2014;88:10851–63. doi:10.1128/JVI.00664-14.
[13] Navaratnarajah CK, Generous AR, Yousaf I, Cattaneo R. Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. J Biol Chem 2020;295:2771–86. doi:10.1074/jbc.REV119.009961.
[14] Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008;133:775–87. doi:10.1016/j.cell.2008.05.009.
[15] Palosaari H, Parisien J-P, Rodriguez JJ, Ulane CM, Horvath CM. STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 2003;77:7635–44. doi:10.1128/jvi.77.13.7635-7644.2003.
[16] Devaux P, von Messling V, Songsungthong W, Springfeld C, Cattaneo R. Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 2007;360:72–83. doi:10.1016/j.virol.2006.09.049.
[17] Desfosses A, Milles S, Jensen MR, Guseva S, Colletier J-P, Maurin D, et al. Assembly and cryo-EM structures of RNA-specific measles virus nucleocapsids provide mechanistic insight into paramyxoviral replication. Proc Natl Acad Sci 2019;116:4256 LP-4264. doi:10.1073/pnas.1816417116.
[18] Du Pont V, Jiang Y, Plemper RK. Bipartite interface of the measles virus phosphoprotein X domain with the large polymerase protein regulates viral polymerase dynamics. PLoS Pathog 2019;15:e1007995. doi:10.1371/journal.ppat.1007995.
[19] Donohue RC, Pfaller CK, Cattaneo R. Cyclical adaptation of measles virus quasispecies to epithelial and lymphocytic cells: To V, or not to V. PLOS Pathog 2019;15:e1007605. doi:10.1371/journal.ppat.1007605.
[20] D Griffin, R Lamb, M Martin, B Roizman SS. No Title. 2001.
[21] Shaffer JA, Bellini WJ, Rota PA. The C protein of measles virus inhibits the type I interferon response. Virology 2003. doi:10.1016/S0042-6822(03)00537-3.
[22] Takeuchi K, Kadota S, Takeda M, Miyajima N, Nagata K. Measles virus V protein blocks interferon (IFN)-alpha/beta but not IFN-gamma signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett 2003;545:177–82. doi:10.1016/s0014-5793(03)00528-3.
[23] Alizadeh R, Ghanei M, Arashkia A, Dorostkar R, Azadmanesh K. Generation of recombinant measles virus containing the wild-type P gene to improve its oncolytic efficiency. Microb Pathog 2019;135:103631. doi:10.1016/j.micpath.2019.103631.
[24] Ohno S, Ono N, Takeda M, Takeuchi K, Yanagi Y. Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J Gen Virol 2004;85:2991–9. doi:10.1099/vir.0.80308-0.
[25] Naniche D, Yeh A, Eto D, Manchester M, Friedman RM, Oldstone MB. Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of Alpha/Beta interferon production. J Virol 2000;74:7478–84. doi:10.1128/jvi.74.16.7478-7484.2000.
[26] Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dötsch C, et al. Rescue of measles viruses from cloned DNA. EMBO J 1995;14:5773–84.
[27] Parks CL, Lerch RA, Walpita P, Sidhu MS, Udem SA. Enhanced measles virus cDNA rescue and gene expression after heat shock. J Virol 1999;73:3560–6. doi:10.1128/JVI.73.5.3560-3566.1999.
[28] Jiang Y, Qin Y, Chen M. Host-Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity. Viruses 2016;8. doi:10.3390/v8110308.
[29] Kärber G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 1931;162:480–3. doi:10.1007/BF01863914.