Deep brain stimulation, epilepsy and inflammation: a brief review

Document Type : Systematic Review

Author
Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
Abstract
Epilepsy is among the wide spread neurological disease. Considering that the occurrence of seizures in 20 to 40% of epileptic patients is resistant to drug therapy, many researches are being conducted to reach new methods of epilepsy treatment. The most common epileptic syndrome in adults is temporal lobe epilepsy. In most patients with temporal lobe epilepsy, the structures of the middle temporal lobe, including the hippocampus, are involved in seizure generation and propagation. One of the relatively new therapies for controlling drug-resistant seizures is direct stimulation of the epileptic focus by electrical stimuli. Numerous studies have shown that the application of deep brain electrical stimulation (DBS) has anticonvulsant effect on the epileptic focus, but the mechanism of its anticonvulsant effect is not yet fully understood. Many abnormalities occur following seizures and it can be postulated that DBS may prevent or reduce these abnormalities. One important abnormality is inflammation. Here we briefly reviewed the probable relationships between anticonvulsant action of DBS and inflammation.

Keywords

Subjects


1. Newton CR, Garcia HH. Epilepsy in poor regions of the world. Lancet 2012; 380(9848):1193–201.
2. Barnett AJ, Man V, McAndrews MP. Parcellation of the Hippocampus Using Resting Functional Connectivity in Temporal Lobe Epilepsy. Front Neurol 2019; 10:920.
3. Beretta S, Carone D, Zanchi C, Bianchi E, Pirovano M, Trentini C et al. Long-term applicability of the new ILAE definition of epilepsy. Results from the PRO-LONG study. Epilepsia 2017; 58(9):1518–23.
4. Mohamed J, Scott BW, David O, McIntyre Burnham W. Development of propagated discharge and behavioral arrest in hippocampal and amygdala-kindled animals. Epilepsy Res 2018; 148:78–89.
5. Sloviter RS. The neurobiology of temporal lobe epilepsy: too much information, not enough knowledge. C R Biol 2005; 328(2):143–53.
6. West S, Nevitt SJ, Cotton J, Gandhi S, Weston J, Sudan A et al. Surgery for epilepsy. Cochrane Database Syst Rev 2019; 6:CD010541.
7. Löscher W. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochem Res 2017; 42(7):1873–88.
8. Samokhina E, Samokhin A. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci 2018; 128(11):1086–96.
9. Coppola A, Moshé SL. Animal models. Handb Clin Neurol 2012; 107:63–98.
10. Fattorusso A, Matricardi S, Mencaroni E, Dell'Isola GB, Di Cara G, Striano P et al. The Pharmacoresistant Epilepsy: An Overview on Existant and New Emerging Therapies. Front Neurol 2021; 12:674483.
11. Jahanshahi A, Mirnajafi-Zadeh J, Javan M, Mohammad-Zadeh M, Rohani R. The antiepileptogenic effect of electrical stimulation at different low frequencies is accompanied with change in adenosine receptors gene expression in rats. Epilepsia 2009; 50(7):1768–79.
12. Rohani R, Aliaghaei A, Abdollahifar M-A, Sadeghi Y, Zare L, Dehghan S et al. Long-Term Effects of Hippocampal Low-Frequency Stimulation on Pro-Inflammatory Factors and Astrocytes Activity in Kindled Rats. Cell J 2021; 23(1):85–92.
13. Rohani R, Piryaei A, Jahanshahi A, Sadeghi Y, Mirnajafi-Zadeh J. Effect of low-frequency stimulation on kindling induced changes in rat dentate gyrus: an ultrastructural study. Acta Neurol Belg 2014; 114(1):47–53.
14. Yang L-X, Jin C-L, Zhu-Ge Z-B, Wang S, Wei E-Q, Bruce IC et al. Unilateral low-frequency stimulation of central piriform cortex delays seizure development induced by amygdaloid kindling in rats. Neuroscience 2006; 138(4):1089–96.
15. Weiss SR, Li XL, Rosen JB, Li H, Heynen T, Post RM. Quenching: inhibition of development and expression of amygdala kindled seizures with low frequency stimulation. Neuroreport 1995; 6(16):2171–6.
16. Bragin A, Wilson CL, Engel J. Rate of interictal events and spontaneous seizures in epileptic rats after electrical stimulation of hippocampus and its afferents. Epilepsia 2002; 43 Suppl 5:81–5.
17. López-Meraz ML, Neri-Bazán L, Rocha L. Low frequency stimulation modifies receptor binding in rat brain. Epilepsy Res 2004; 59(2-3):95–105.
18. Ghasemi Z, Naderi N, Shojaei A, Raoufy MR, Ahmadirad N, Mirnajafi-Zadeh J. Effect of Low-Frequency Electrical Stimulation on the High-K+-Induced Neuronal Hyperexcitability in Rat Hippocampal Slices. Neuroscience 2018; 369:87–96.
19. Goodman JH, Berger RE, Tcheng TK. Preemptive low-frequency stimulation decreases the incidence of amygdala-kindled seizures. Epilepsia 2005; 46(1):1–7.
20. Ozen LJ, Young NA, Koshimori Y, Teskey GC. Low-frequency stimulation reverses kindling-induced neocortical motor map expansion. Neuroscience 2008; 153(1):300–7.
21. Sadeghian A, Salari Z, Azizi H, Raoufy MR, Shojaei A, Kosarmadar N et al. The role of dopamine D2-like receptors in a "depotentiation-like effect" of deep brain stimulation in kindled rats. Brain Res 2020; 1738:146820.
22. Lee HK, Kameyama K, Huganir RL, Bear MF. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 1998; 21(5):1151–62.
23. Vezzani A, Lang B, Aronica E. Immunity and Inflammation in Epilepsy. Cold Spring Harb Perspect Med 2015; 6(2):a022699.
24. Vezzani A. Epilepsy and inflammation in the brain: overview and pathophysiology. Epilepsy Curr 2014; 14(1 Suppl):3–7.
25. Tan TH-L, Perucca P, O'Brien TJ, Kwan P, Monif M. Inflammation, ictogenesis, and epileptogenesis: An exploration through human disease. Epilepsia 2021; 62(2):303–24.
26. Steinhäuser C, Seifert G. Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol 2002; 447(2-3):227–37.
27. Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 2006; 9(6):816–23.
28. Tröscher AR, Gruber J, Wagner JN, Böhm V, Wahl A-S, Oertzen TJ von. Inflammation Mediated Epileptogenesis as Possible Mechanism Underlying Ischemic Post-stroke Epilepsy. Front Aging Neurosci 2021; 13:781174.
29. Ray S, Kenchaiah R, Asranna A, Padmanabha H, Kulanthaivelu K, Mundlamuri RC et al. Clinical spectrum of pediatric drug refractory epilepsy secondary to parieto-occipital gliosis. Epilepsy Res 2021; 178:106804.
30. Devinsky O, Vezzani A, Najjar S, Lanerolle NC de, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci 2013; 36(3):174–84.
31. Araki T, Ikegaya Y, Koyama R. The effects of microglia- and astrocyte-derived factors on neurogenesis in health and disease. Eur J Neurosci 2021; 54(5):5880–901.
32. Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W. Minocycline as a neuroprotective agent. Neuroscientist 2005; 11(4):308–22.
33. Arzimanoglou A, Hirsch E, Nehlig A, Castelnau P, Gressens P, Pereira de Vasconcelos A. Epilepsy and neuroprotection: an illustrated review. Epileptic Disord 2002; 4(3):173–82.
34. Mattson MP, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 2001; 107(3):247–54.
35. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 2002; 22(15):6401–7.
36. Matsumoto T, Mugishima H. Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J Atheroscler Thromb 2006; 13(3):130–5.
37. Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek MP et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J 2001; 15(7):1218–20.
38. Nicoletti JN, Shah SK, McCloskey DP, Goodman JH, Elkady A, Atassi H et al. Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience 2008; 151(1):232–41.
39. McCloskey DP, Croll SD, Scharfman HE. Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J Neurosci 2005; 25(39):8889–97.
40. Nikitidou L, Kanter-Schlifke I, Dhondt J, Carmeliet P, Lambrechts D, Kokaia M. VEGF receptor-2 (Flk-1) overexpression in mice counteracts focal epileptic seizures. PLoS One 2012; 7(7):e40535.
41. Nicoletti JN, Lenzer J, Salerni EA, Shah SK, Elkady A, Khalid S et al. Vascular endothelial growth factor attenuates status epilepticus-induced behavioral impairments in rats. Epilepsy Behav 2010; 19(3):272–7.
42. Croll SD, Goodman JH, Scharfman HE. Vascular endothelial growth factor (VEGF) in seizures: a double-edged sword. Adv Exp Med Biol 2004; 548:57–68.
43. Wang Z-H, Mong M-C, Yang Y-C, Yin M-C. Asiatic acid and maslinic acid attenuated kainic acid-induced seizure through decreasing hippocampal inflammatory and oxidative stress. Epilepsy Res 2018; 139:28–34.
44. Młodzikowska-Albrecht J, Steinborn B, Zarowski M. Cytokines, epilepsy and epileptic drugs--is there a mutual influence? Pharmacol Rep 2007; 59(2):129–38.
45. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003; 23(25):8692–700.
46. Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA et al. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis 2015; 82:311–20.
47. Chen Y-C, Zhu G-Y, Wang X, Shi L, Du T-T, Liu D-F et al. Anterior thalamic nuclei deep brain stimulation reduces disruption of the blood-brain barrier, albumin extravasation, inflammation and apoptosis in kainic acid-induced epileptic rats. Neurol Res 2017; 39(12):1103–13.
48. Chen Y-C, Shi L, Zhu G-Y, Wang X, Liu D-F, Liu Y-Y et al. Effects of anterior thalamic nuclei deep brain stimulation on neurogenesis in epileptic and healthy rats. Brain Res 2017; 1672:65–72.
49. Chen Y-C, Zhu G-Y, Wang X, Shi L, Jiang Y, Zhang X et al. Deep brain stimulation of the anterior nucleus of the thalamus reverses the gene expression of cytokines and their receptors as well as neuronal degeneration in epileptic rats. Brain Res 2017; 1657:304–11.
50. Rajneesh CP, Hsieh T-H, Chen S-C, Lai C-H, Yang L-Y, Chin H-Y et al. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus Renders Neuroprotection through the Suppression of Hippocampal Apoptosis: An Experimental Animal Study. Brain Sci 2020; 10(1).
51. Grembecka B, Glac W, Listowska M, Jerzemowska G, Plucińska K, Majkutewicz I et al. Subthalamic Deep Brain Stimulation Affects Plasma Corticosterone Concentration and Peripheral Immunity Changes in Rat Model of Parkinson's Disease. J Neuroimmune Pharmacol 2021; 16(2):454–69.
52. Kaur H, Patro I, Tikoo K, Sandhir R. Curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy. Neurochem Int 2015; 89:40–50.
53. Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol 2014; 40(5):520–43.
54. Parpura V, Heneka MT, Montana V, Oliet SHR, Schousboe A, Haydon PG et al. Glial cells in (patho)physiology. J Neurochem 2012; 121(1):4–27.
55. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010; 119(1):7–35.
56. Tjalkens RB, Popichak KA, Kirkley KA. Inflammatory Activation of Microglia and Astrocytes in Manganese Neurotoxicity. Adv Neurobiol 2017; 18:159–81.
57. Brambilla R, Persaud T, Hu X, Karmally S, Shestopalov VI, Dvoriantchikova G et al. Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J Immunol 2009; 182(5):2628–40.
58. Takano T, Oberheim N, Cotrina ML, Nedergaard M. Astrocytes and ischemic injury. Stroke 2009; 40(3 Suppl):S8-12.
59. Fenoy AJ, Goetz L, Chabardès S, Xia Y. Deep brain stimulation: are astrocytes a key driver behind the scene? CNS Neurosci Ther 2014; 20(3):191–201.
60. Vedam-Mai V, van Battum EY, Kamphuis W, Feenstra MGP, Denys D, Reynolds BA et al. Deep brain stimulation and the role of astrocytes. Mol Psychiatry 2012; 17(2):124-31, 115.
61. Vedam-Mai V, Rodgers C, Gureck A, Vincent M, Ippolito G, Elkouzi A et al. Deep Brain Stimulation associated gliosis: A post-mortem study. Parkinsonism Relat Disord 2018; 54:51–5.
62. Krum JM, Mani N, Rosenstein JM. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 2002; 110(4):589–604.
63. Jung YD, Liu W, Reinmuth N, Ahmad SA, Fan F, Gallick GE et al. Vascular endothelial growth factor is upregulated by interleukin-1 beta in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis 2001; 4(2):155–62.
64. Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K et al. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem 1996; 271(45):28220–8.
65. Shinko A, Agari T, Kameda M, Yasuhara T, Kondo A, Tayra JT et al. Spinal cord stimulation exerts neuroprotective effects against experimental Parkinson's disease. PLoS One 2014; 9(7):e101468.