1. Newton CR, Garcia HH. Epilepsy in poor regions of the world. Lancet 2012; 380(9848):1193–201.
2. Barnett AJ, Man V, McAndrews MP. Parcellation of the Hippocampus Using Resting Functional Connectivity in Temporal Lobe Epilepsy. Front Neurol 2019; 10:920.
3. Beretta S, Carone D, Zanchi C, Bianchi E, Pirovano M, Trentini C et al. Long-term applicability of the new ILAE definition of epilepsy. Results from the PRO-LONG study. Epilepsia 2017; 58(9):1518–23.
4. Mohamed J, Scott BW, David O, McIntyre Burnham W. Development of propagated discharge and behavioral arrest in hippocampal and amygdala-kindled animals. Epilepsy Res 2018; 148:78–89.
5. Sloviter RS. The neurobiology of temporal lobe epilepsy: too much information, not enough knowledge. C R Biol 2005; 328(2):143–53.
6. West S, Nevitt SJ, Cotton J, Gandhi S, Weston J, Sudan A et al. Surgery for epilepsy. Cochrane Database Syst Rev 2019; 6:CD010541.
7. Löscher W. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochem Res 2017; 42(7):1873–88.
8. Samokhina E, Samokhin A. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci 2018; 128(11):1086–96.
9. Coppola A, Moshé SL. Animal models. Handb Clin Neurol 2012; 107:63–98.
10. Fattorusso A, Matricardi S, Mencaroni E, Dell'Isola GB, Di Cara G, Striano P et al. The Pharmacoresistant Epilepsy: An Overview on Existant and New Emerging Therapies. Front Neurol 2021; 12:674483.
11. Jahanshahi A, Mirnajafi-Zadeh J, Javan M, Mohammad-Zadeh M, Rohani R. The antiepileptogenic effect of electrical stimulation at different low frequencies is accompanied with change in adenosine receptors gene expression in rats. Epilepsia 2009; 50(7):1768–79.
12. Rohani R, Aliaghaei A, Abdollahifar M-A, Sadeghi Y, Zare L, Dehghan S et al. Long-Term Effects of Hippocampal Low-Frequency Stimulation on Pro-Inflammatory Factors and Astrocytes Activity in Kindled Rats. Cell J 2021; 23(1):85–92.
13. Rohani R, Piryaei A, Jahanshahi A, Sadeghi Y, Mirnajafi-Zadeh J. Effect of low-frequency stimulation on kindling induced changes in rat dentate gyrus: an ultrastructural study. Acta Neurol Belg 2014; 114(1):47–53.
14. Yang L-X, Jin C-L, Zhu-Ge Z-B, Wang S, Wei E-Q, Bruce IC et al. Unilateral low-frequency stimulation of central piriform cortex delays seizure development induced by amygdaloid kindling in rats. Neuroscience 2006; 138(4):1089–96.
15. Weiss SR, Li XL, Rosen JB, Li H, Heynen T, Post RM. Quenching: inhibition of development and expression of amygdala kindled seizures with low frequency stimulation. Neuroreport 1995; 6(16):2171–6.
16. Bragin A, Wilson CL, Engel J. Rate of interictal events and spontaneous seizures in epileptic rats after electrical stimulation of hippocampus and its afferents. Epilepsia 2002; 43 Suppl 5:81–5.
17. López-Meraz ML, Neri-Bazán L, Rocha L. Low frequency stimulation modifies receptor binding in rat brain. Epilepsy Res 2004; 59(2-3):95–105.
18. Ghasemi Z, Naderi N, Shojaei A, Raoufy MR, Ahmadirad N, Mirnajafi-Zadeh J. Effect of Low-Frequency Electrical Stimulation on the High-K+-Induced Neuronal Hyperexcitability in Rat Hippocampal Slices. Neuroscience 2018; 369:87–96.
19. Goodman JH, Berger RE, Tcheng TK. Preemptive low-frequency stimulation decreases the incidence of amygdala-kindled seizures. Epilepsia 2005; 46(1):1–7.
20. Ozen LJ, Young NA, Koshimori Y, Teskey GC. Low-frequency stimulation reverses kindling-induced neocortical motor map expansion. Neuroscience 2008; 153(1):300–7.
21. Sadeghian A, Salari Z, Azizi H, Raoufy MR, Shojaei A, Kosarmadar N et al. The role of dopamine D2-like receptors in a "depotentiation-like effect" of deep brain stimulation in kindled rats. Brain Res 2020; 1738:146820.
22. Lee HK, Kameyama K, Huganir RL, Bear MF. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 1998; 21(5):1151–62.
23. Vezzani A, Lang B, Aronica E. Immunity and Inflammation in Epilepsy. Cold Spring Harb Perspect Med 2015; 6(2):a022699.
24. Vezzani A. Epilepsy and inflammation in the brain: overview and pathophysiology. Epilepsy Curr 2014; 14(1 Suppl):3–7.
25. Tan TH-L, Perucca P, O'Brien TJ, Kwan P, Monif M. Inflammation, ictogenesis, and epileptogenesis: An exploration through human disease. Epilepsia 2021; 62(2):303–24.
26. Steinhäuser C, Seifert G. Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol 2002; 447(2-3):227–37.
27. Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 2006; 9(6):816–23.
28. Tröscher AR, Gruber J, Wagner JN, Böhm V, Wahl A-S, Oertzen TJ von. Inflammation Mediated Epileptogenesis as Possible Mechanism Underlying Ischemic Post-stroke Epilepsy. Front Aging Neurosci 2021; 13:781174.
29. Ray S, Kenchaiah R, Asranna A, Padmanabha H, Kulanthaivelu K, Mundlamuri RC et al. Clinical spectrum of pediatric drug refractory epilepsy secondary to parieto-occipital gliosis. Epilepsy Res 2021; 178:106804.
30. Devinsky O, Vezzani A, Najjar S, Lanerolle NC de, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci 2013; 36(3):174–84.
31. Araki T, Ikegaya Y, Koyama R. The effects of microglia- and astrocyte-derived factors on neurogenesis in health and disease. Eur J Neurosci 2021; 54(5):5880–901.
32. Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W. Minocycline as a neuroprotective agent. Neuroscientist 2005; 11(4):308–22.
33. Arzimanoglou A, Hirsch E, Nehlig A, Castelnau P, Gressens P, Pereira de Vasconcelos A. Epilepsy and neuroprotection: an illustrated review. Epileptic Disord 2002; 4(3):173–82.
34. Mattson MP, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest 2001; 107(3):247–54.
35. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 2002; 22(15):6401–7.
36. Matsumoto T, Mugishima H. Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J Atheroscler Thromb 2006; 13(3):130–5.
37. Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek MP et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J 2001; 15(7):1218–20.
38. Nicoletti JN, Shah SK, McCloskey DP, Goodman JH, Elkady A, Atassi H et al. Vascular endothelial growth factor is up-regulated after status epilepticus and protects against seizure-induced neuronal loss in hippocampus. Neuroscience 2008; 151(1):232–41.
39. McCloskey DP, Croll SD, Scharfman HE. Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J Neurosci 2005; 25(39):8889–97.
40. Nikitidou L, Kanter-Schlifke I, Dhondt J, Carmeliet P, Lambrechts D, Kokaia M. VEGF receptor-2 (Flk-1) overexpression in mice counteracts focal epileptic seizures. PLoS One 2012; 7(7):e40535.
41. Nicoletti JN, Lenzer J, Salerni EA, Shah SK, Elkady A, Khalid S et al. Vascular endothelial growth factor attenuates status epilepticus-induced behavioral impairments in rats. Epilepsy Behav 2010; 19(3):272–7.
42. Croll SD, Goodman JH, Scharfman HE. Vascular endothelial growth factor (VEGF) in seizures: a double-edged sword. Adv Exp Med Biol 2004; 548:57–68.
43. Wang Z-H, Mong M-C, Yang Y-C, Yin M-C. Asiatic acid and maslinic acid attenuated kainic acid-induced seizure through decreasing hippocampal inflammatory and oxidative stress. Epilepsy Res 2018; 139:28–34.
44. Młodzikowska-Albrecht J, Steinborn B, Zarowski M. Cytokines, epilepsy and epileptic drugs--is there a mutual influence? Pharmacol Rep 2007; 59(2):129–38.
45. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003; 23(25):8692–700.
46. Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA et al. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis 2015; 82:311–20.
47. Chen Y-C, Zhu G-Y, Wang X, Shi L, Du T-T, Liu D-F et al. Anterior thalamic nuclei deep brain stimulation reduces disruption of the blood-brain barrier, albumin extravasation, inflammation and apoptosis in kainic acid-induced epileptic rats. Neurol Res 2017; 39(12):1103–13.
48. Chen Y-C, Shi L, Zhu G-Y, Wang X, Liu D-F, Liu Y-Y et al. Effects of anterior thalamic nuclei deep brain stimulation on neurogenesis in epileptic and healthy rats. Brain Res 2017; 1672:65–72.
49. Chen Y-C, Zhu G-Y, Wang X, Shi L, Jiang Y, Zhang X et al. Deep brain stimulation of the anterior nucleus of the thalamus reverses the gene expression of cytokines and their receptors as well as neuronal degeneration in epileptic rats. Brain Res 2017; 1657:304–11.
50. Rajneesh CP, Hsieh T-H, Chen S-C, Lai C-H, Yang L-Y, Chin H-Y et al. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus Renders Neuroprotection through the Suppression of Hippocampal Apoptosis: An Experimental Animal Study. Brain Sci 2020; 10(1).
51. Grembecka B, Glac W, Listowska M, Jerzemowska G, Plucińska K, Majkutewicz I et al. Subthalamic Deep Brain Stimulation Affects Plasma Corticosterone Concentration and Peripheral Immunity Changes in Rat Model of Parkinson's Disease. J Neuroimmune Pharmacol 2021; 16(2):454–69.
52. Kaur H, Patro I, Tikoo K, Sandhir R. Curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy. Neurochem Int 2015; 89:40–50.
53. Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol 2014; 40(5):520–43.
54. Parpura V, Heneka MT, Montana V, Oliet SHR, Schousboe A, Haydon PG et al. Glial cells in (patho)physiology. J Neurochem 2012; 121(1):4–27.
55. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010; 119(1):7–35.
56. Tjalkens RB, Popichak KA, Kirkley KA. Inflammatory Activation of Microglia and Astrocytes in Manganese Neurotoxicity. Adv Neurobiol 2017; 18:159–81.
57. Brambilla R, Persaud T, Hu X, Karmally S, Shestopalov VI, Dvoriantchikova G et al. Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J Immunol 2009; 182(5):2628–40.
58. Takano T, Oberheim N, Cotrina ML, Nedergaard M. Astrocytes and ischemic injury. Stroke 2009; 40(3 Suppl):S8-12.
59. Fenoy AJ, Goetz L, Chabardès S, Xia Y. Deep brain stimulation: are astrocytes a key driver behind the scene? CNS Neurosci Ther 2014; 20(3):191–201.
60. Vedam-Mai V, van Battum EY, Kamphuis W, Feenstra MGP, Denys D, Reynolds BA et al. Deep brain stimulation and the role of astrocytes. Mol Psychiatry 2012; 17(2):124-31, 115.
61. Vedam-Mai V, Rodgers C, Gureck A, Vincent M, Ippolito G, Elkouzi A et al. Deep Brain Stimulation associated gliosis: A post-mortem study. Parkinsonism Relat Disord 2018; 54:51–5.
62. Krum JM, Mani N, Rosenstein JM. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 2002; 110(4):589–604.
63. Jung YD, Liu W, Reinmuth N, Ahmad SA, Fan F, Gallick GE et al. Vascular endothelial growth factor is upregulated by interleukin-1 beta in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis 2001; 4(2):155–62.
64. Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K et al. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem 1996; 271(45):28220–8.
65. Shinko A, Agari T, Kameda M, Yasuhara T, Kondo A, Tayra JT et al. Spinal cord stimulation exerts neuroprotective effects against experimental Parkinson's disease. PLoS One 2014; 9(7):e101468.