References
1. Mason GM, Lokhandwala S, Riggins T, Spencer RMC. Sleep and human cognitive development. Sleep Med Rev 2021; 57:101472.
2. Cordi MJ, Rasch B. How robust are sleep-mediated memory benefits? Curr Opin Neurobiol 2021; 67:1–7.
3. Ferrara M, Gennaro L de. How much sleep do we need? Sleep Med Rev 2001; 5(2):155–79.
4. Orzeł-Gryglewska J. Consequences of sleep deprivation. Int J Occup Med Environ Health 2010; 23(1):95–114.
5. Landolt H-P, Holst SC, Sousek A. Effects of acute and chronic sleep deprivation: J Sleep Res 2014.
6. Vargas I, Nguyen AM, Muench A, Bastien CH, Ellis JG, Perlis ML. Acute and Chronic Insomnia: What Has Time and/or Hyperarousal Got to Do with It? Brain Sci 2020; 10(2).
7. Sanches I, Teixeira F, dos Santos JM, Ferreira AJ. Effects of Acute Sleep Deprivation Resulting from Night Shift Work on Young Doctors. Acta Med Port 2015; 28(4):457–62.
8. Powell NB, Chau JKM. Sleepy driving. Med Clin North Am 2010; 94(3):531–40.
9. Collet J, Ftouni S, Clough M, Cain SW, Fielding J, Anderson C. Differential Impact of Sleep Deprivation and Circadian Timing on Reflexive Versus Inhibitory Control of Attention. Sci Rep 2020; 10(1):7270.
10. Killgore WDS. Effects of sleep deprivation on cognition. Prog Brain Res 2010; 185:105–29.
11. Whitney P, Hinson JM. Measurement of cognition in studies of sleep deprivation. Prog Brain Res 2010; 185:37–48.
12. Bonnet MH, Balkin TJ, Dinges DF, Roehrs T, Rogers NL, Wesensten NJ. The use of stimulants to modify performance during sleep loss: a review by the sleep deprivation and Stimulant Task Force of the American Academy of Sleep Medicine. Sleep 2005; 28(9):1163–87.
13. van Dongen HPA, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 2003; 26(2):117–26.
14. Belenky G, Wesensten NJ, Thorne DR, Thomas ML, Sing HC, Redmond DP et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J Sleep Res 2003; 12(1):1–12.
15. Borbély AA. A two process model of sleep regulation. Hum Neurobiol 1982; 1(3):195–204.
16. Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol 2005; 25(1):117–29.
17. Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM, Goldstein-Piekarski AN et al. The sleep-deprived human brain. Nat Rev Neurosci 2017; 18(7):404–18.
18. Chee MWL, Goh CSF, Namburi P, Parimal S, Seidl KN, Kastner S. Effects of sleep deprivation on cortical activation during directed attention in the absence and presence of visual stimuli. Neuroimage 2011; 58(2):595–604.
19. Chee MWL, Tan JC. Lapsing when sleep deprived: neural activation characteristics of resistant and vulnerable individuals. Neuroimage 2010; 51(2):835–43.
20. Chee MWL, Tan JC, Parimal S, Zagorodnov V. Sleep deprivation and its effects on object-selective attention. Neuroimage 2010; 49(2):1903–10.
21. Chee MWL, Tan JC, Zheng H, Parimal S, Weissman DH, Zagorodnov V et al. Lapsing during sleep deprivation is associated with distributed changes in brain activation. J Neurosci 2008; 28(21):5519–28.
22. Czisch M, Wehrle R, Harsay HA, Wetter TC, Holsboer F, Sämann PG et al. On the Need of Objective Vigilance Monitoring: Effects of Sleep Loss on Target Detection and Task-Negative Activity Using Combined EEG/fMRI. Front Neurol 2012; 3:67.
23. Drummond SP, Brown GG, Stricker JL, Buxton RB, Wong EC, Gillin JC. Sleep deprivation-induced reduction in cortical functional response to serial subtraction. Neuroreport 1999; 10(18):3745–8.
24. Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R et al. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res 2000; 9(4):335–52.
25. Tomasi D, Wang RL, Telang F, Boronikolas V, Jayne MC, Wang G-J et al. Impairment of attentional networks after 1 night of sleep deprivation. Cereb Cortex 2009; 19(1):233–40.
26. Halassa MM, Chen Z, Wimmer RD, Brunetti PM, Zhao S, Zikopoulos B et al. State-dependent architecture of thalamic reticular subnetworks. Cell 2014; 158(4):808–21.
27. Steriade M, Llinás RR. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 1988; 68(3):649–742.
28. Shao Y, Wang L, Ye E, Jin X, Ni W, Yang Y et al. Decreased thalamocortical functional connectivity after 36 hours of total sleep deprivation: evidence from resting state FMRI. PLoS One 2013; 8(10):e78830.
29. Portas CM, Rees G, Howseman AM, Josephs O, Turner R, Frith CD. A specific role for the thalamus in mediating the interaction of attention and arousal in humans. J Neurosci 1998; 18(21):8979–89.
30. Chee MWL, Choo WC. Functional imaging of working memory after 24 hr of total sleep deprivation. J Neurosci 2004; 24(19):4560–7.
31. Havas JA de, Parimal S, Soon CS, Chee MWL. Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. Neuroimage 2012; 59(2):1745–51.
32. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008; 1124:1–38.
33. Drummond SPA, Bischoff-Grethe A, Dinges DF, Ayalon L, Mednick SC, Meloy MJ. The neural basis of the psychomotor vigilance task. Sleep 2005; 28(9):1059–68.
34. Marek S, Dosenbach NUF. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues Clin Neurosci 2018; 20(2):133–40.
35. Cui J, Tkachenko O, Gogel H, Kipman M, Preer LA, Weber M et al. Microstructure of frontoparietal connections predicts individual resistance to sleep deprivation. Neuroimage 2015; 106:123–33.
36. Qi J, Li B-Z, Zhang Y, Pan B, Gao Y-H, Zhan H et al. Altered Hypothalamic Functional Connectivity Following Total Sleep Deprivation in Young Adult Males. Front Neurosci 2021; 15:688247.
37. Fu W, Dai C, Chen J, Wang L, Song T, Peng Z et al. Altered insular functional connectivity correlates to impaired vigilant attention after sleep deprivation: A resting-state functional magnetic resonance imaging study. Front Neurosci 2022; 16:889009.
38. Seeley WW. The Salience Network: A Neural System for Perceiving and Responding to Homeostatic Demands. J. Neurosci. 2019; 39(50):9878–82.
39. Ma N, Dinges DF, Basner M, Rao H. How acute total sleep loss affects the attending brain: a meta-analysis of neuroimaging studies. Sleep 2015; 38(2):233–40.
40. Gumenyuk V, Roth T, Korzyukov O, Jefferson C, Bowyer S, Drake CL. Habitual short sleep impacts frontal switch mechanism in attention to novelty. Sleep 2011; 34(12):1659–70.
41. Gazes Y, Rakitin BC, Steffener J, Habeck C, Lisanby SH, Butterfield B et al. Dual-tasking alleviated sleep deprivation disruption in visuomotor tracking: an fMRI study. Brain Cogn 2012; 78(3):248–56.
42. Naqvi NH, Bechara A. The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Struct Funct 2010; 214(5-6):435–50.
43. Cauda F, D'Agata F, Sacco K, Duca S, Geminiani G, Vercelli A. Functional connectivity of the insula in the resting brain. Neuroimage 2011; 55(1):8–23.
44. Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 2015; 16(1):55–61.
45. Elvsåshagen T, Mutsaerts HJ, Zak N, Norbom LB, Quraishi SH, Pedersen PØ et al. Cerebral blood flow changes after a day of wake, sleep, and sleep deprivation. Neuroimage 2019; 186:497–509.
46. Qi J, Li B-Z, Zhang Y, Pan B, Gao Y-H, Zhan H et al. Altered insula-prefrontal functional connectivity correlates to decreased vigilant attention after total sleep deprivation. Sleep Med 2021; 84:187–94.
47. Piantoni G, Cheung BLP, van Veen BD, Romeijn N, Riedner BA, Tononi G et al. Disrupted directed connectivity along the cingulate cortex determines vigilance after sleep deprivation. Neuroimage 2013; 79:213–22.
48. Qi J, Li B-Z, Zhang Y, Pan B, Gao Y-H, Zhan H et al. Altered functional connectivity between the nucleus basalis of Meynert and anterior cingulate cortex is associated with declined attentional performance after total sleep deprivation. Behav Brain Res 2021; 409:113321.
49. Fang Z, Spaeth AM, Ma N, Zhu S, Hu S, Goel N et al. Altered salience network connectivity predicts macronutrient intake after sleep deprivation. Sci Rep 2015; 5:8215.
50. Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 2008; 42(3):1127–41.
51. Ljubojevic V, Luu P, Gill PR, Beckett L-A, Takehara-Nishiuchi K, Rosa E de. Cholinergic Modulation of Frontoparietal Cortical Network Dynamics Supporting Supramodal Attention. J. Neurosci. 2018; 38(16):3988–4005.
52. Porkka-Heiskanen T, Alanko L, Kalinchuk A, Stenberg D. Adenosine and sleep. Sleep Med Rev 2002; 6(4):321–32.
53. Zhang C, Wu C, Zhang H, Dou W, Li W, Sami MU et al. Disrupted Resting-state Functional Connectivity of the Nucleus Basalis of Meynert in Parkinson's Disease with Mild Cognitive Impairment. Neuroscience 2020; 442:228–36.
54. Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2019; 154:34–49.
55. Jones BE. Arousal systems. Front Biosci 2003; 8:s438-51.
56. Vargas I, Lopez-Duran N. Investigating the effect of acute sleep deprivation on hypothalamic-pituitary-adrenal-axis response to a psychosocial stressor. Psychoneuroendocrinology 2017; 79:1–8.
57. Fifel K, Meijer JH, Deboer T. Long-term effects of sleep deprivation on neuronal activity in four hypothalamic areas. Neurobiol Dis 2018; 109(Pt A):54–63.
58. Schmidt C, Collette F, Leclercq Y, Sterpenich V, Vandewalle G, Berthomier P et al. Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area. Science 2009; 324(5926):516–9.
59. Venner A, Todd WD, Fraigne J, Bowrey H, Eban-Rothschild A, Kaur S et al. Newly identified sleep-wake and circadian circuits as potential therapeutic targets. Sleep 2019; 42(5).
60. Gaggioni G, Ly JQM, Chellappa SL, Coppieters 't Wallant D, Rosanova M, Sarasso S et al. Human fronto-parietal response scattering subserves vigilance at night. Neuroimage 2018; 175:354–64.
61. Song P, Lin H, Liu C, Jiang Y, Lin Y, Xue Q et al. Transcranial Magnetic Stimulation to the Middle Frontal Gyrus During Attention Modes Induced Dynamic Module Reconfiguration in Brain Networks. Front Neuroinform 2019; 13:22.
62. Sarter M, Hasselmo ME, Bruno JP, Givens B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Brain Res Rev 2005; 48(1):98–111.
63. Abivardi A, Bach DR. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo. Hum Brain Mapp 2017; 38(8):3927–40.
64. Pruessner L, Barnow S, Holt DV, Joormann J, Schulze K. A cognitive control framework for understanding emotion regulation flexibility. Emotion 2020; 20(1):21–9.
65. Shao Y, Lei Y, Wang L, Zhai T, Jin X, Ni W et al. Altered resting-state amygdala functional connectivity after 36 hours of total sleep deprivation. PLoS One 2014; 9(11):e112222.
66. Patel AK, Reddy V, Araujo JF. StatPearls: Physiology, Sleep Stages. TI 2022.
67. Gaudreau H, Carrier J, Montplaisir J. Age-related modifications of NREM sleep EEG: from childhood to middle age. J Sleep Res 2001; 10(3):165–72.
68. Memar P, Faradji F. A Novel Multi-Class EEG-Based Sleep Stage Classification System. IEEE Trans Neural Syst Rehabil Eng 2018; 26(1):84–95.
69. Vazquez J, Baghdoyan HA. Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. Am J Physiol Regul Integr Comp Physiol 2001; 280(2):R598-601.
70. Ocasio W. Attention to Attention. Organ Sci 2011; 22(5):1286–96.
71. Bennett KB, Flach JM. Graphical displays: implications for divided attention, focused attention, and problem solving. Hum Factors 1992; 34(5):513–33.
72. Doran SM, van Dongen HP, Dinges DF. Sustained attention performance during sleep deprivation: evidence of state instability. Arch Ital Biol 2001; 139(3):253–67.
73. Berger A, Posner M. Pathologies of brain attentional networks. Neurosci Biobehav Rev 2000; 24(1):3–5.
74. Jamro D, Zurek G, Lachowicz M, Lenart D, Dulnik M. Alternating Attention and Physical Fitness in Relation to the Level of Combat Training. Healthcare 2022; 10(2).
75. Spelke E, Hirst W, Neisser U. Skills of divided attention. Cognition 1976; 4(3):215–30.
76. Johnston WA, Dark VJ. Selective Attention. Annu Rev Psychol 1986; 37(1):43–75.
77. Squire RF, Noudoost B, Schafer RJ, Moore T. Prefrontal contributions to visual selective attention. Annu Rev Neurosci 2013; 36:451–66.
78. Valdez P, Ramírez C, García A, Talamantes J, Armijo P, Borrani J. Circadian rhythms in components of attention. Biol Rhythm Res 2005; 36(1-2):57–65.
79. García A, Angel JD, Borrani J, Ramirez C, Valdez P. Sleep deprivation effects on basic cognitive processes: which components of attention, working memory, and executive functions are more susceptible to the lack of sleep? Sleep Sci 2021; 14(2):107–18.