The Role of Dopamine D2-Like Receptors in the Occurrence of LFS Effects on Spontaneous Synaptic Currents

Document Type : Original Research

Authors
1 Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2 Tarbiat Modares University
Abstract
low-frequency electrical stimulation (LFS) has been considered as a new treatment method for epilepsy patients resistant to drug treatment, but its mechanism of action is not fully understood. Gi protein-coupled receptors such as dopamine D2-like receptors may play a role in mediating the effects of LFS. In this study, the role of dopamine D2-like receptors in the effects of LFS on seizure-induced spontaneous synaptic activity in the hippocampal CA1 region of fully kindled rats has been investigated. Animals were kindled by semi-rapid kindling method (6 stimulations per day) by electrical stimulation of the hippocampal CA1 region. In LFS-treated groups, animals received 4 LFS packets at 5 minutes, 6 hours, 24 hours, and 30 hours after the last LFS stimulation.Each LFS package consisted of 4 series with an interval of 5 minutes, and each series consisted of 200 pulses, and the pulse duration was 0.1 ms with a frequency of 1 Hz. Haloperidol (D2 receptor antagonist, mµ2) or bromocriptine (D2 receptor agonist, g/µlitµ2) was injected into the lateral ventricle immediately after the last kindling stimulation, before applying LFS. The obtained results showed that the application of LFS in kindled animals did not affect the spontaneous excitatory currents in the hippocampus, but it caused a decrease in the spontaneous inhibitory currents in the hippocampus. D2 receptor agonist did not mimic the effects of LFS. The use of haloperidol did not affect the effects of LFS. Therefore, spontaneous excitatory and inhibitory potentials are not a suitable quantity to investigate the effectiveness of LFS.

Keywords


Aksoy-Aksel, A., Manahan-Vaughan, D., 2013. The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing. Front Synaptic Neurosci. 5, 5.
Alam, A.M., Starr, M.S., 1993. Dopaminergic modulation of pilocarpine-induced motor seizures in the rat: the role of hippocampal D2 receptors. Neuroscience. 53, 425-31.
Anwyl, R., Walshe, J., Rowan, M., 1987. Electroconvulsive treatment reduces long-term potentiation in rat hippocampus. Brain Res. 435, 377-9.
Banerjee, P.N., Filippi, D., Allen Hauser, W., 2009. The descriptive epidemiology of epilepsy-a review. Epilepsy Res. 85, 31-45.
Bozzi, Y., Borrelli, E., 2013. The role of dopamine signaling in epileptogenesis. Front Cell Neurosci. 7, 157.
Chambers, A., Bowen, J.M., 2013. Electrical stimulation for drug-resistant epilepsy: an evidence-based analysis. Ont Health Technol Assess Ser. 13, 1-37.
Cukiert, A., Cukiert, C.M., Burattini, J.A., Lima, A.M., 2014. Seizure outcome after hippocampal deep brain stimulation in a prospective cohort of patients with refractory temporal lobe epilepsy. Seizure. 23, 6-9.
Cukiert, A., Cukiert, C.M., Burattini, J.A., Mariani, P.P., Bezerra, D.F., 2017. Seizure outcome after hippocampal deep brain stimulation in patients with refractory temporal lobe epilepsy: A prospective, controlled, randomized, double-blind study. Epilepsia. 58, 1728-1733.
Esmaeilpour, K., Sheibani, V., Shabani, M., Mirnajafi-Zadeh, J., 2017. Effect of low frequency electrical stimulation on seizure-induced short- and long-term impairments in learning and memory in rats. Physiol Behav. 168, 112-121.
Ghafouri, S., Fathollahi, Y., Semnanian, S., Shojaei, A., Mirnajafi-Zadeh, J., 2017. Effects of Low Frequency Stimulation on Spontaneous Inhibitory and Excitatory Post-Synaptic Currents in Hippocampal CA1 Pyramidal Cells of Kindled Rats. Cell J. 18, 547-555.
Gharib, A., Komaki, A., Manoochehri Khoshinani, H., Saidijam, M., Barkley, V., Sarihi, A., Mirnajafi-Zadeh, J., 2019. Intrahippocampal 5-HT1A receptor antagonist inhibits the improving effect of low-frequency stimulation on memory impairment in kindled rats. Brain Res Bull. 148, 109-117.
Ghasemi, Z., Naderi, N., Shojaei, A., Raoufy, M.R., Ahmadirad, N., Mirnajafi-Zadeh, J., 2018. Effect of Low-Frequency Electrical Stimulation on the High-K(+)-Induced Neuronal Hyperexcitability in Rat Hippocampal Slices. Neuroscience. 369, 87-96.
Ghorbani, P., Mohammad-Zadeh, M., Mirnajafi-Zadeh, J., Fathollahi, Y., 2007. Effect of different patterns of low-frequency stimulation on piriform cortex kindled seizures. Neurosci Lett. 425, 162-6.
Ghotbedin, Z., Janahmadi, M., Mirnajafi-Zadeh, J., Behzadi, G., Semnanian, S., 2013. Electrical low frequency stimulation of the kindling site preserves the electrophysiological properties of the rat hippocampal CA1 pyramidal neurons from the destructive effects of amygdala kindling: the basis for a possible promising epilepsy therapy. Brain Stimul. 6, 515-23.
Gilbert, T.H., Hannesson, D.K., Corcoran, M.E., 2000. Hippocampal kindled seizures impair spatial cognition in the Morris water maze. Epilepsy Res. 38, 115-25.
Goodman, J.H., Berger, R.E., Tcheng, T.K., 2005. Preemptive low-frequency stimulation decreases the incidence of amygdala-kindled seizures. Epilepsia. 46, 1-7.
Hayes, S.M., Ryan, L., Schnyer, D.M., Nadel, L., 2004. An fMRI study of episodic memory: retrieval of object, spatial, and temporal information. Behav Neurosci. 118, 885-96.
Hesse, G.W., Teyler, T.J., 1976. Reversible loss of hippocampal long term potentiation following electronconvulsive seizures. Nature. 264, 562-4.
Krug, M., Koch, M., Grecksch, G., Schulzeck, K., 1997. Pentylenetetrazol kindling changes the ability to induce potentiation phenomena in the hippocampal CA1 region. Physiol Behav. 62, 721-7.
Leung, L.S., Wu, C., 2003. Kindling suppresses primed-burst-induced long-term potentiation in hippocampal CA1. Neuroreport. 14, 211-4.
Li, Y., Mogul, D.J., 2007. Electrical control of epileptic seizures. J Clin Neurophysiol. 24, 197-204.
Lopes da Silva, F.H., Gorter, J.A., Wadman, W.J., 1986. Kindling of the hippocampus induces spatial memory deficits in the rat. Neurosci Lett. 63, 115-20.
Lothman, E.W., 1994. Seizure circuits in the hippocampus and associated structures. Hippocampus. 4, 286-90.
Lynch, M., Sayin, U., Bownds, J., Janumpalli, S., Sutula, T., 2000. Long-term consequences of early postnatal seizures on hippocampal learning and plasticity. Eur J Neurosci. 12, 2252-64.
Mardani, P., Oryan, S., Sarihi, A., Alaei, E., Komaki, A., Mirnajafi-Zadeh, J., 2018. Endocannabinoid CB1 receptors are involved in antiepileptogenic effect of low frequency electrical stimulation during perforant path kindling in rats. Epilepsy Res. 144, 71-81.
Martin, S.J., de Hoz, L., Morris, R.G., 2005. Retrograde amnesia: neither partial nor complete hippocampal lesions in rats result in preferential sparing of remote spatial memory, even after reminding. Neuropsychologia. 43, 609-24.
Mohammad-Zadeh, M., Mirnajafi-Zadeh, J., Fathollahi, Y., Javan, M., Jahanshahi, A., Noorbakhsh, S.M., Motamedi, F., 2009. The role of adenosine A(1) receptors in mediating the inhibitory effects of low frequency stimulation of perforant path on kindling acquisition in rats. Neuroscience. 158, 1632-43.
Morimoto, K., Fahnestock, M., Racine, R.J., 2004. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 73, 1-60.
Myers, C.E., Bermudez-Hernandez, K., Scharfman, H.E., 2013. The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function. PLoS One. 8, e68208.
O'Keefe, J., Dostrovsky, J., 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171-5.
Picot, M.C., Baldy-Moulinier, M., Daures, J.P., Dujols, P., Crespel, A., 2008. The prevalence of epilepsy and pharmacoresistant epilepsy in adults: a population-based study in a Western European country. Epilepsia. 49, 1230-8.
Pisani, F., Oteri, G., Costa, C., Di Raimondo, G., Di Perri, R., 2002. Effects of psychotropic drugs on seizure threshold. Drug Saf. 25, 91-110.
Sadegh, M., Mirnajafi-Zadeh, J., Javan, M., Fathollahi, Y., Mohammad-Zadeh, M., Jahanshahi, A., Noorbakhsh, S.M., 2007. The role of galanin receptors in anticonvulsant effects of low-frequency stimulation in perforant path-kindled rats. Neuroscience. 150, 396-403.
Sato, M., Racine, R.J., McIntyre, D.C., 1990. Kindling: basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol. 76, 459-72.
Schiller, Y., Bankirer, Y., 2007. Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro. J Neurophysiol. 97, 1887-902.
Schrader, L.M., Stern, J.M., Wilson, C.L., Fields, T.A., Salamon, N., Nuwer, M.R., Vespa, P.M., Fried, I., 2006. Low frequency electrical stimulation through subdural electrodes in a case of refractory status epilepticus. Clin Neurophysiol. 117, 781-8.
Schubert, M., Siegmund, H., Pape, H.C., Albrecht, D., 2005. Kindling-induced changes in plasticity of the rat amygdala and hippocampus. Learn Mem. 12, 520-6.
Shahpari, M., Mirnajafi-Zadeh, J., Firoozabadi, S.M., Yadollahpour, A., 2012. Effect of low-frequency electrical stimulation parameters on its anticonvulsant action during rapid perforant path kindling in rat. Epilepsy Res. 99, 69-77.
Staubli, U., Lynch, G., 1990. Stable depression of potentiated synaptic responses in the hippocampus with 1-5 Hz stimulation. Brain Res. 513, 113-8.
Velasco, A.L., Velasco, F., Velasco, M., Trejo, D., Castro, G., Carrillo-Ruiz, J.D., 2007. Electrical stimulation of the hippocampal epileptic foci for seizure control: a double-blind, long-term follow-up study. Epilepsia. 48, 1895-903.
Yamamoto, J., Ikeda, A., Kinoshita, M., Matsumoto, R., Satow, T., Takeshita, K., Matsuhashi, M., Mikuni, N., Miyamoto, S., Hashimoto, N., Shibasaki, H., 2006. Low-frequency electric cortical stimulation decreases interictal and ictal activity in human epilepsy. Seizure. 15, 520-7.
Zhong, X.L., Lv, K.R., Zhang, Q., Yu, J.T., Xing, Y.Y., Wang, N.D., Tan, L., 2011. Low-frequency stimulation of bilateral anterior nucleus of thalamus inhibits amygdale-kindled seizures in rats. Brain Res Bull. 86, 422-7.