1. Beghi E. The epidemiology of epilepsy. Neuroepidemiology. 2020;54(2):185-91.
2. Shorvon S, Ferlisi M. The treatment of super-refractory status epilepticus: a critical review of available therapies and a clinical treatment protocol. Brain. 2011;134(10):2802-18.
3. D’Andrea Meira I, Romão TT, Pires do Prado HJ, Krüger LT, Pires MEP, da Conceição PO. Ketogenic diet and epilepsy: what we know so far. Frontiers in neuroscience. 2019;13:5.
4. Cervenka MC, Patton K, Eloyan A, Henry B, Kossoff EH. The impact of the modified Atkins diet on lipid profiles in adults with epilepsy. Nutritional neuroscience. 2016;19(3):131-7.
5. Hartman AL, Zheng X, Bergbower E, Kennedy M, Hardwick JM. Seizure tests distinguish intermittent fasting from the ketogenic diet. Epilepsia. 2010;51(8):1395-402.
6. Hartman AL, Rubenstein JE, Kossoff EH. Intermittent fasting: A “new” historical strategy for controlling seizures? Epilepsy research. 2013;104(3):275-9.
7. Karimzadeh F, Jafarian M, Gharakhani M, Razeghi Jahromi S, Mohamadzadeh E, Khallaghi B, et al. Behavioural and histopathological assessment of the effects of periodic fasting on pentylenetetrazol-induced seizures in rats. Nutritional neuroscience. 2013;16(4):147-52.
8. Youssef FF, Ramchandani J, Manswell S, McRae A. Adult-onset calorie restriction attenuates kainic acid excitotoxicity in the rat hippocampal slice. Neuroscience letters. 2008;431(2):118-22.
9. Parinejad N, Keshavarzi S, Movahedin M, Raza M. Behavioral and histological assessment of the effect of intermittent feeding in the pilocarpine model of temporal lobe epilepsy. Epilepsy research. 2009;86(1):54-65.
10. Engelborghs S, D’hooge R, De Deyn P. Pathophysiology of epilepsy. Acta neurologica belgica. 2000;100(4):201-13.
11. Eftekhari S, Mehrabi S, Karimzadeh F, Joghataei M-T, Khaksarian M, Hadjighassem MR, et al. Brain derived neurotrophic factor modification of epileptiform burst discharges in a temporal lobe epilepsy model. 2016;7(2):115.
12. Petroff OA. Book review: GABA and glutamate in the human brain. The Neuroscientist. 2002;8(6):562-73.
13. Cossart R, Bernard C, Ben-Ari Y. Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends in neurosciences. 2005;28(2):108-15.
14. Houser CR, Esclapez M. Vulnerability and plasticity of the GABA system in the pilocarpine model of spontaneous recurrent seizures. Epilepsy research. 1996;26(1):207-18.
15. Barzroodi Pour M, Bayat M, Golab F, Eftekharzadeh M, Katebi M, Soleimani M, et al. The effect of exercise on GABA signaling pathway in the model of chemically induced seizures. Life sciences. 2019;232:116667.
16. Deidda G, Bozarth IF, Cancedda L. Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Frontiers in cellular neuroscience. 2014;8:119.
17. Yang D, Wang L, Huang M, Yu J, Wang X, Luo J. Effects of pretreatment with repetitive transcranial magnetic stimulation on development of seizures induced by pilocarpine and expression of GAD65 in rat hippocampus. Chin J Clin Neurosci. 2009;17:337-40.
18. Kash SF, Johnson RS, Tecott LH, Noebels JL, Mayfield RD, Hanahan D, et al. Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proceedings of the National Academy of Sciences. 1997;94(25):14060-5.
19. Lazarevic V, Pothula S, Andres-Alonso M, Fejtova A. Molecular mechanisms driving homeostatic plasticity of neurotransmitter release. Frontiers in cellular neuroscience. 2013;7:244.
20. Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20(5):359-68.
21. Rebrov I, Karpova M, Andreev A, Klishina NY, Kuznetsova L, van Luijtelaar G, et al. Chlorine conductance of the GABA A receptor of synaptoneurosomes from the brain cortex of WAG/Rij rats with absence epilepsy and Wistar rats at an early period in the development of nonconvulsive or tonic-clonic kindling. Neurochemical Journal. 2007;1(4):293-8.
22. AVOLI M. GABA and epileptogenesis. Epilepsia: journal of the International League against Epilepsy. 1997;38(4):399-407.
23. Petroff OA, Rothman DL, Behar KL, Mattson RH. Low brain GABA level is associated with poor seizure control. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1996;40(6):908-11.
24. Bough KJ, Valiyil R, Han FT, Eagles DA. Seizure resistance is dependent upon age and calorie restriction in rats fed a ketogenic diet. Epilepsy research. 1999;35(1):21-8.
25. Greene AE, Todorova MT, McGowan R, Seyfried TN. Caloric restriction inhibits seizure susceptibility in epileptic EL mice by reducing blood glucose. Epilepsia. 2001;42(11):1371-8.
26. Greene AE, Todorova MT, Seyfried TN. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. Journal of neurochemistry. 2003;86(3):529-37.
27. Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill Jr GF. Ketone bodies, potential therapeutic uses. IUBMB life. 2001;51(4):241-7.
28. Yudkoff M, Daikhin Y, Nissim I, Lazarow A, Nissim I. Ketogenic diet, amino acid metabolism, and seizure control. Journal of neuroscience research. 2001;66(5):931-40.
29. Cheng CM, Hicks K, Wang J, Eagles DA, Bondy CA. Caloric restriction augments brain glutamic acid decarboxylase‐65 and‐67 expression. Journal of neuroscience research. 2004;77(2):270-6.
30. Bernard C, Cossart R, Hirsch J, Esclapez M, Ben‐Ari Y. What is GABAergic inhibition? How is it modified in epilepsy? Epilepsia. 2000;41:S90-S5.
31. Stagg CJ, Lang B, Best JG, McKnight K, Cavey A, Johansen‐Berg H, et al. Autoantibodies to glutamic acid decarboxylase in patients with epilepsy are associated with low cortical GABA levels. Epilepsia. 2010;51(9):1898-901.
32. Halonen T, Nissinen J, Pitkänen A. Chronic elevation of brain GABA levels beginning two days after status epilepticus does not prevent epileptogenesis in rats. Neuropharmacology. 2001;40(4):536-50.
33. Liu Y-Q, Yu F, Liu W-H, He X-H, Peng B-W. Dysfunction of hippocampal interneurons in epilepsy. Neuroscience bulletin. 2014;30(6):985-98.
34. Leung LS, Shen B, Huszka C. Long-lasting disruption of spatial memory by GABAB receptor antagonist induced seizures. Epilepsy & Behavior. 2019;96:1-5.
35. Silkis I. Role of Acetylcholine and GABAergic Inhibitory Transmission in Seizure Pattern Generation in Neural Networks Integrating the Neocortex, Hippocampus, Basal Ganglia, and Thalamus. Neurochemical Journal. 2020;14(2):150-66.
36. Staley K. Molecular mechanisms of epilepsy. Nature neuroscience. 2015;18(3):367-72.
37. Zavvari F, Mousavi SMM, Ejlali M, Barfi S, Karimzadeh FJIJoPRI. Glutamate Signaling pathway in absence epilepsy: possible role of ionotropic AMPA glutamate receptor type 1 subunit. 2020;19(4):410.