1. Goyal SN, Reddy NM, Patil KR, Nakhate KT, Ojha S, Patil CR, et al. Challenges and issues with streptozotocin-induced diabetes–a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chemico-biological interactions. 2016;244:49-63.
2. Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. Journal of diabetes & metabolic disorders. 2013;12:1-7.
3. Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behavioral neuroscience. 1998;112(5):1199.
4. Salkovic-Petrisic M, Knezovic A, Hoyer S, Riederer P. What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. Journal of neural transmission. 2013;120:233-52.
5. Sun P, Ortega G, Tan Y, Hua Q, Riederer PF, Deckert J, et al. Streptozotocin impairs proliferation and differentiation of adult hippocampal neural stem cells in vitro-correlation with alterations in the expression of proteins associated with the insulin system. Frontiers in aging neuroscience. 2018;10:145.
6. Thomé GR, Oliveira VA, Schetinger MRC, Saraiva RA, Souza D, Rodrigues OED, et al. Selenothymidine protects against biochemical and behavioral alterations induced by ICV-STZ model of dementia in mice. Chemico-Biological Interactions. 2018;294:135-43.
7. Salkovic-Petrisic M, Osmanovic-Barilar J, Bruckner MK, Hoyer S, Arendt T, Riederer P. Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer's disease: a long-term follow up study. Journal of neural transmission (Vienna, Austria : 1996). 2011;118(5):765-72.
8. Salkovic-Petrisic M, Osmanovic-Barilar J, Knezovic A, Hoyer S, Mosetter K, Reutter W. Long-term oral galactose treatment prevents cognitive deficits in male Wistar rats treated intracerebroventricularly with streptozotocin. Neuropharmacology. 2014;77:68-80.
9. Chen Y, Liang Z, Tian Z, Blanchard J, Dai C-l, Chalbot S, et al. Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Molecular neurobiology. 2014;49:547-62.
10. Salkovic-Petrisic M, Knezovic A, Hoyer S, Riederer P. What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer's disease, about the therapeutic strategies in Alzheimer's research. Journal of neural transmission (Vienna, Austria : 1996). 2013;120(1):233-52.
11. Joo SS, Yoo YM, Ahn BW, Nam SY, Kim YB, Hwang KW, et al. Prevention of inflammation-mediated neurotoxicity by Rg3 and its role in microglial activation. Biological & pharmaceutical bulletin. 2008;31(7):1392-6.
12. Gao Y, Duan YZ. Increased COX2 in the trigeminal nucleus caudalis is involved in orofacial pain induced by experimental tooth movement. Anatomical record (Hoboken, NJ : 2007). 2010;293(3):485-91.
13. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Molecular psychiatry. 2006;11(7):680-4.
14. Nakayama M, Uchimura K, Zhu RL, Nagayama T, Rose ME, Stetler RA, et al. Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(18):10954-9.
15. Wang P, Guan PP, Wang T, Yu X, Guo JJ, Wang ZY. Aggravation of Alzheimer's disease due to the COX-2-mediated reciprocal regulation of IL-1beta and Abeta between glial and neuron cells. Aging cell. 2014;13(4):605-15.
16. Galimberti D, Schoonenboom N, Scarpini E, Scheltens P. Chemokines in serum and cerebrospinal fluid of Alzheimer's disease patients. Annals of neurology. 2003;53(4):547-8.
17. Ianiski FR, Alves CB, Souza AC, Pinton S, Roman SS, Rhoden CR, et al. Protective effect of meloxicam-loaded nanocapsules against amyloid-beta peptide-induced damage in mice. Behavioural brain research. 2012;230(1):100-7.
18. Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Current opinion in neurobiology. 2004;14(3):311-7.
19. Nagai T, Kamei H, Dohniwa M, Takayanagi M, Suzuki M, Matsuya T, et al. Involvement of hippocampal extracellular signal-regulated kinase 1/2 in spatial working memory in rats. Neuroreport. 2006;17(13):1453-7.
20. Hyman BT, Elvhage TE, Reiter J. Extracellular signal regulated kinases. Localization of protein and mRNA in the human hippocampal formation in Alzheimer's disease. The American journal of pathology. 1994;144(3):565-72.
21. Trojanowski JQ, Mawal-Dewan M, Schmidt ML, Martin J, Lee VM. Localization of the mitogen activated protein kinase ERK2 in Alzheimer's disease neurofibrillary tangles and senile plaque neurites. Brain research. 1993;618(2):333-7.
22. Puce S, Basile G, Bavestrello G, Bruzzone S, Cerrano C, Giovine M, et al. Abscisic acid signaling through cyclic ADP-ribose in hydroid regeneration. The Journal of biological chemistry. 2004;279(38):39783-8.
23. Bruzzone S, Moreschi I, Usai C, Guida L, Damonte G, Salis A, et al. Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(14):5759-64.
24. Magnone M, Sturla L, Jacchetti E, Scarfi S, Bruzzone S, Usai C, et al. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2012;26(3):1261-71.
25. Bruzzone S, Ameri P, Briatore L, Mannino E, Basile G, Andraghetti G, et al. The plant hormone abscisic acid increases in human plasma after hyperglycemia and stimulates glucose consumption by adipocytes and myoblasts. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2012;26(3):1251-60.
26. Bruzzone S, Bodrato N, Usai C, Guida L, Moreschi I, Nano R, et al. Abscisic acid is an endogenous stimulator of insulin release from human pancreatic islets with cyclic ADP ribose as second messenger. The Journal of biological chemistry. 2008;283(47):32188-97.
27. Scarfi S, Ferraris C, Fruscione F, Fresia C, Guida L, Bruzzone S, et al. Cyclic ADP-ribose-mediated expansion and stimulation of human mesenchymal stem cells by the plant hormone abscisic acid. Stem cells (Dayton, Ohio). 2008;26(11):2855-64.
28. Qi CC, Ge JF, Zhou JN. Preliminary evidence that abscisic acid improves spatial memory in rats. Physiology & behavior. 2015;139:231-9.
29. Naderi R, Esmaeili-Mahani S, Abbasnejad M. Phosphatidylinositol-3-kinase and protein kinase C are involved in the pro-cognitive and anti-anxiety effects of phytohormone abscisic acid in rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017;96:112-9.
30. Kooshki R, Anaeigoudari A, Abbasnejad M, Askari-Zahabi K, Esmaeili-Mahani S. Abscisic acid interplays with PPARγ receptors and ameliorates diabetes-induced cognitive deficits in rats. Avicenna Journal of Phytomedicine. 2021;11(3):247.
31. Paxinos G, Franklin K. The mouse brain in stereotaxic coordinates. . Gulf Professional Publishing, London.2004.
32. Khorasani A, Abbasnejad M, Esmaeili-Mahani S. Phytohormone abscisic acid ameliorates cognitive impairments in streptozotocin-induced rat model of Alzheimer's disease through PPARβ/δ and PKA signaling. International Journal of Neuroscience. 2019;129(11):1053-65.
33. Ahmed ME, Javed H, Khan MM, Vaibhav K, Ahmad A, Khan A, et al. Attenuation of oxidative damage-associated cognitive decline by Withania somnifera in rat model of streptozotocin-induced cognitive impairment. Protoplasma. 2013;250(5):1067-78.
34. Mollashahi M, Abbasnejad M, Esmaeili-Mahani S. Phytohormone abscisic acid elicits antinociceptive effects in rats through the activation of opioid and peroxisome proliferator-activated receptors beta/delta. European journal of pharmacology. 2018;832:75-80.
35. Naderi R, Esmaeili-Mahani S, Abbasnejad M. Extracellular calcium influx through L-type calcium channels, intracellular calcium currents and extracellular signal-regulated kinase signaling are involved in the abscisic acid-induced precognitive and anti-anxiety effects. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018;109:582-8.
36. Halawany AME, Sayed NSE, Abdallah HM, Dine RSE. RETRACTED ARTICLE: protective effects of gingerol on streptozotocin-induced sporadic Alzheimer’s disease: emphasis on inhibition of β-amyloid, COX-2, alpha-, beta-secretases and APH1a. Scientific Reports. 2017;7(1):2902.
37. Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, et al. Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. International immunopharmacology. 2014;19(2):317-26.
38. Yasojima K, Schwab C, McGeer EG, McGeer PL. Distribution of cyclooxygenase-1 and cyclooxygenase-2 mRNAs and proteins in human brain and peripheral organs. Brain research. 1999;830(2):226-36.
39. Dhull DK, Jindal A, Dhull RK, Aggarwal S, Bhateja D, Padi SS. Neuroprotective effect of cyclooxygenase inhibitors in ICV-STZ induced sporadic Alzheimer's disease in rats. Journal of molecular neuroscience : MN. 2012;46(1):223-35.
40. Guri AJ, Misyak SA, Hontecillas R, Hasty A, Liu D, Si H, et al. Abscisic acid ameliorates atherosclerosis by suppressing macrophage and CD4+ T cell recruitment into the aortic wall. The Journal of nutritional biochemistry. 2010;21(12):1178-85.
41. Hontecillas R, Roberts PC, Carbo A, Vives C, Horne WT, Genis S, et al. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARgamma-dependent mechanism. The Journal of nutritional biochemistry. 2013;24(6):1019-27.
42. Guri AJ, Hontecillas R, Si H, Liu D, Bassaganya-Riera J. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets. Clinical nutrition (Edinburgh, Scotland). 2007;26(1):107-16.
43. Ma Q-L, Harris-White ME, Ubeda OJ, Simmons M, Beech W, Lim GP, et al. Evidence of Abeta- and transgene-dependent defects in ERK-CREB signaling in Alzheimer's models. Journal of neurochemistry. 2007;103(4):1594-607.
44. Townsend M, Mehta T, Selkoe DJ. Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. The Journal of biological chemistry. 2007;282(46):33305-12.
45. Jahrling JB, Hernandez CM, Denner L, Dineley KT. PPARgamma recruitment to active ERK during memory consolidation is required for Alzheimer's disease-related cognitive enhancement. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2014;34(11):4054-63.
46. Zocchi E, Carpaneto A, Cerrano C, Bavestrello G, Giovine M, Bruzzone S, et al. The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(26):14859-64.
47. Guri AJ, Hontecillas R, Ferrer G, Casagran O, Wankhade U, Noble AM, et al. Loss of PPAR gamma in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. The Journal of nutritional biochemistry. 2008;19(4):216-28.
48. Bassaganya-Riera J, Skoneczka J, Kingston D, Krishnan A, Misyak S, Guri A, et al. Mechanisms of action and medicinal applications of abscisic acid. Current medicinal chemistry. 2010;17(5):467-78.
49. Hauser F, Li Z, Waadt R, Schroeder JI. SnapShot: abscisic acid signaling. Cell. 2017;171(7):1708-. e0.