1. https://www.who.int/activities/estimating-the-burden-of-foodborne-diseases
2. Grace, D. Burden of foodborne disease in low-income and middle-income countries and opportunities for scaling food safety interventions. Food Sec. 15, 1475–1488 (2023). https://doi.org/10.1007/s12571-023-01391-3
3. Nakamura S, Nakao A, Itagaki S, Matsui K, Nishii S, Shan X, Yamamoto Y, Sadanaga Y, Chen Z, Shiigi H. Development of organic–inorganic nanostructure labels for food-poisoning bacteria. Sensors and Materials. 2023 Oct 20;35(10):4761-8. https://doi.org/10.18494/SAM4432
4. Bari, M.L.; Yeasmin, S. Chapter 8—Foodborne Diseases and Responsible Agents. In Food Safety and Preservation; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 195–229.
http://dx.doi.org/10.1016/B978-0-12-814956-0.00008-1
5. Gallo M., Ferrara L., Calogero A., Montesano D., Naviglio D. (2020) Food Research International, 137 , art. no. 109414, https://doi.org/10.1016/j.foodres.2020.109414.
6. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018 Oct 10;11:1645-1658. http://doi: 10.2147/IDR.S173867.
7. AlKhafaji, M. H. ., Mohsin, R. H. ., & Alshaikh Faqri, A. M. . (2024). Food Additive Mediated Biosynthesis of AgNPs with Antimicrobial Activity Against Hypermucoviscous Enterotoxigenic Foodborne Klebsiella pneumoniae. Basrah Journal of Agricultural Sciences, 37(1), 278–295. https://doi.org/10.37077/25200860.2024.37.1.21
8. Singh, T.; Shukla, S.; Kumar, P.; Wahla, V.; Bajpai, V.K. Application of Nanotechnology in Food Science:Perception and Overview. Front. Microbiol. 2017, 8, 1501. https://doi.org/10.3389/fmicb.2017.01501
9. Noga, M.; Milan, J.; Frydrych, A.; Jurowski, K. Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. Int. J. Mol. Sci. 2023, 24, 5133. https://doi.org/10.3390/ijms24065133
10. Silva, L.P.; Silveira, A.P.; Bonatto, C.C.; Reis, I.G.; Milreu, P.V. Chapter 26—Silver Nanoparticles as Antimicrobial Agents: Past, Present, and Future. In Nanostructures for Antimicrobial Therapy; Ficai, A., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 577–596.
11. Romero, Gabriela. (2012). [Frontiers of Nanoscience] Nanobiotechnology - Inorganic Nanoparticles vs Organic Nanoparticles Volume 4 || Synthesis of Organic Nanoparticles. , , 115–141. https://doi.org/10.1016/B978-0-12-415769-9.00004-2
12. Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1272–1291.
13. Sadeghi, B.; Garmaroudi, F.S.; Hashemi, M.; Nezhad, H.R.; Nasrollahi, A.; Ardalan, S.; Ardalan, S. Comparison of the anti-bacterial activity on the nanosilver shapes: Nanoparticles, nanorods and nanoplates. Adv. Powder Technol. 2012, 23, 22–26.
14. Duran, N.; Duran, M.; de Jesus, M.B.; Seabra, A.B.; Favaro,W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomed. Nanotechnol. 2016, 12, 789–799.
15. Guozhou Cao, Han Lin, Palanisamy Kannan, Chun Wang, Yingying Zhong, Youju Huang, and Zhiyong Guo. Enhanced Antibacterial and Food Simulant Activities of Silver Nanoparticles/Polypropylene Nanocomposite Films, Langmuir 2018 34 (48), 14537-14545 DOI: 10.1021/acs.langmuir.8b03061
16. Ren, Y.Y.; Yang, H.; Wang, T.; Wang, C. Bio-synthesis of silver nanoparticles with antibacterial activity.Mater. Chem. Phys. 2019, 235, 121746.
17. Marambio-Jones, C.; Hoek, E.M. A review of the antibacterial e_ects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531–1551.
18. Matsumura, Y.; Yoshikata, K.; Kunisaki, S.-i.; Tsuchido, T. Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate. Appl. Environ. Microbiol. 2003, 69 (7), 4278
19. Bumbudsanpharoke, N.; Choi, J.; Ko, S. Applications of Nanomaterials in Food Packaging. J. Nanosci. Nanotechnol. 2015, 15 (9), 6357-6372.
20. Silvan, J.M.; Zorraquin-Pena, I.; Gonzalez de Llano, D.; Moreno-Arribas, M.V.; Martinez-Rodriguez, A.J. Antibacterial activity of glutathione-stabilized silver nanoparticles against Campylobacter multidrug-resistant strains. Front. Microbiol. 2018, 9, 458.
21. Chandhru, M.; Logesh, R.; Rani, S.K.; Ahmed, N.; Vasimalai, N. One-pot green route synthesis of silver nanoparticles from jack fruit seeds and their antibacterial activities with escherichia coli and salmonella bacteria. Biocatal. Agric. Biotechnol. 2019, 20, 101241.
22. Du, J.; Hu, Z.; Yu, Z.; Li, H.; Pan, J.; Zhao, D.; Bai, Y. Antibacterial activity of a novel Forsythia suspensa fruit mediated green silver nanoparticles against food-borne pathogens and mechanisms investigation. Mater. Sci. Eng. C 2019, 102, 247–253.
23. Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84.
24. Ishihara, M.; Nguyen, V.Q.; Mori, Y.; Nakamura, S.; Hattori, H. Adsorption of Silver Nanoparticles onto Different Surface Structures of Chitin/Chitosan and Correlations with Antimicrobial Activities. Int. J. Mol.Sci. 2015, 16, 13973–13988.
25. Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016, 7, 1831.
26. Ghosh, S.; Patil, S.; Ahire, M.; Kitture, R.; Kale, S.; Pardesi, K.; Cameotra, S.S.; Bellare, J.; Dhavale, D.D.;Jabgunde, A.; et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed. 2012, 7, 483–496.
27. Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73,1712–1720.
28. Parmar, S.; Kaur, H.; Singh,J.; Matharu, A.S.; Ramakrishna, S.;Bechelany, M. Recent Advances in Green Synthesis of Ag NPs for Extenuating Antimicrobial Resistance. Nanomaterials 2022, 12,1115.
29. Harleen Kaur, Protima Rauwel, Erwan Rauwel,Chapter 6 - Antimicrobial nanoparticles: Synthesis, mechanism of actions, Editor(s): Gregory Guisbiers, In Advanced Topics in Biomaterials, Antimicrobial Activity of Nanoparticles, Elsevier,2023,Pages 155-202, https://doi.org/10.1016/B978-0-12-821637-8.00008-0.
30. Carbone, M.; Donia, D.T.; Sabbatella, G.; Antiochia, R. Silver nanoparticles in polymeric matrices for fresh food packaging. J. King Saud Univ. Sci. 2016, 28, 273–279.
31. Medina-Jaramillo, C.; Ochoa-Yepes, O.; Bernal, C.; Famá, L. Active and smart biodegradable packaging based on starch and natural extracts. Carbohydr. Polym. 2017, 176, 187–194.
32. Moreno, M.A.; Orqueda, M.E.; Gómez-Mascaraque, L.G.; Isla, M.I.; López-Rubio, A. Crosslinked electrospun zein-based food packaging coatings containing bioactive chilto fruit extracts. Food Hydrocoll. 2019, 95, 496–505
33. European Food Safety Authority (EFSA). Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J. 2018, 16, 5327.
34. Zorraquín-Peña, I.; Cueva, C.; Bartolomé, B.; Moreno-Arribas, M.V. Silver Nanoparticles against Foodborne Bacteria. Effects at Intestinal Level and Health Limitations. Microorganisms 2020, 8, 132. https://doi.org/10.3390/microorganisms8010132
35. Ndlovu, N.; Mayaya, T.; Muitire, C.; Munyengwa, N. Nanotechnology Applications in Crop Production and Food Systems. Int. J.Plant Breed 2020, 7, 624–634.
36. Altemimi, A.B.; Farag, H.A.M.; Salih, T.H.; Awlqadr, F.H.; Al-Manhel, A.J.A.; Vieira, I.R.S.; Conte-Junior, C.A. Application of Nanoparticles in Human Nutrition: A Review. Nutrients 2024, 16, 636. https://doi.org/10.3390/nu16050636
37. Li, J.; Tang, M.; Xue, Y. Review of the effects of silver nanoparticle exposure on gut bacteria. J. Appl. Toxicol.2019, 39, 27–37.
38. Bouwmeester, H.; van der Zande, M.; Jepson, M.A. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota. WIREs Nanomed. Nanobiotechnol. 2018, 10, e1481.
39. Vieira, I.R.S.; de Carvalho, A.P.A.; Conte-Junior, C.A. Recent Advances in Biobased and Biodegradable Polymer Nanocomposites, Nanoparticles, and Natural Antioxidants for Antibacterial and Antioxidant Food Packaging Applications. Compr. Rev. Food Sci.Food Saf. 2022, 21, 3673–3716.
40. Mercier-Bonin, M.; Despax, B.; Raynaud, P.; Houdeau, E.; Thomas, M. Mucus and microbiota as emerging players in gut nanotoxicology: The example of dietary silver and titanium dioxide nanoparticles. Crit. Rev.Food Sci. Nutr. 2018, 8, 1023–1032.
41. Tamanna Jaswal, Jasmine Gupta, A review on the toxicity of silver nanoparticles on human health, Materials Today: Proceedings, Volume 81, Part 2, 2023, Pages 859-863, https://doi.org/10.1016/j.matpr.2021.04.266.
42. Pourmobini H, Kazemi-Arababadi SMR, Roshankhah SH, Taghavi MM, Taghipour Z, Shabanizadeh A (2021) The effect of royal jelly and silver nanoparticles on inflammation of the liver and kidney inflammation. Avicenna J Phytomed 11(3):218–223
43. Irene Z-P, C. C. (2020). silver nanoparticles against food borne bacteria efects at intestinal level and health limitations. microorganism , 8,132
44. Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375.
45. Janzadeh, A., Behroozi, Z., saliminia, F. et al. Neurotoxicity of silver nanoparticles in the animal brain: a systematic review and meta-analysis. Forensic Toxicol 40, 49–63 (2022). https://doi.org/10.1007/s11419-021-00589-4
46. K.; W˛esierska, M.; Gromadzka-Ostrowska, J.; Wilczak, J.; Oczkowski, M.;M˛eczy ´nska-Wielgosz, S.; Kruszewski, M. Silver Nanoparticles Impair Cognitive Functions and Modify the Hippocampal Level of Neurotransmitters in a Coating-Dependent Manner. Int. J. Mol. Sci. 2021, 22, 12706