Exploring the Role of Lipid Profile Alterations in Neurodegenerative Disorders: A Narrative Review

Document Type : Analytic Review

Authors
Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
Abstract
Neurodegenerative disorders are characterized by the progressive deterioration of the central nervous system (CNS). Depending on the affected regions, patients may experience a broad spectrum of neurological deficits, such as sensory, motor, cognitive, and psychological symptoms. Notably, cholesterol synthesis in CNS occurs in a de novo manner and is distinct from systemic lipid metabolism. However, lipids constitute a large portion of the brain and are involved in crucial brain functions like neurotransmission and synaptic plasticity. Emerging evidence suggests that alterations in lipid metabolism may contribute to the development and progression of different aspects of neurodegeneration, such as neuroinflammation, oxidative stress, and impaired neuronal membrane function.

There are several critical changes in various lipid fractions, like cholesterol and triglycerides (TG), in individuals with neurodegenerative disorders. This narrative review aims to summarize the current understanding of the relationship between lipid profiles and neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). The findings may have important implications for the development of novel diagnostic and therapeutic strategies targeting lipid-related pathways in the management of these debilitating neurological conditions.

Keywords

Subjects


1. Cham BE. Importance of apolipoproteins in lipid metabolism. Chem Biol Interact. 1978 Mar;20(3):263–77.
2. Lund-Katz S, Phillips MC. High Density Lipoprotein Structure–Function and Role in Reverse Cholesterol Transport. In 2010. p. 183–227.
3. Das M, Gursky O. Amyloid-Forming Properties of Human Apolipoproteins: Sequence Analyses and Structural Insights. In 2015. p. 175–211.
4. Mahley RW, Innerarity TL, Rall SC, Weisgraber KH. Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res. 1984 Dec 1;25(12):1277–94.
5. Bali S, Utaal MS. Serum lipids and lipoproteins: a brief review of the composition, transport and physiological functions. International Journal of Scientific Reports. 2019 Sep 24;5(10):309.
6. Gianazza E, Zoanni B, Mallia A, Brioschi M, Colombo GI, Banfi C. Proteomic studies on apoB‐containing lipoprotein in cardiovascular research: A comprehensive review. Mass Spectrom Rev. 2023 Jul 8;42(4):1397–423.
7. Z. Jovandaric M, J. Milenkovic S. Significance of Lipid and Lipoprotein in Organism. In: Apolipoproteins, Triglycerides and Cholesterol. IntechOpen; 2020.
8. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008 Feb;9(2):112–24.
9. Horn A, Jaiswal JK. Structural and signaling role of lipids in plasma membrane repair. In 2019. p. 67–98.
10. Das P, Ingole N. Lipoproteins and Their Effects on the Cardiovascular System. Cureus. 2023 Nov 15;
11. Batty M, Bennett MR, Yu E. The Role of Oxidative Stress in Atherosclerosis. Cells. 2022 Nov 30;11(23).
12. Brites F, Martin M, Guillas I, Kontush A. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clin. 2017 Dec;8:66–77.
13. Márquez AB, Nazir S, van der Vorst EPC. High-Density Lipoprotein Modifications: A Pathological Consequence or Cause of Disease Progression? Biomedicines. 2020 Nov 28;8(12):549.
14. Denimal D. Antioxidant and Anti-Inflammatory Functions of High-Density Lipoprotein in Type 1 and Type 2 Diabetes. Antioxidants. 2023 Dec 28;13(1):57.
15. Orth M, Bellosta S. Cholesterol: Its Regulation and Role in Central Nervous System Disorders. Cholesterol. 2012 Oct 17;2012:1–19.
16. Jin U, Park SJ, Park SM. Cholesterol Metabolism in the Brain and Its Association with Parkinson’s Disease. Exp Neurobiol. 2019 Oct 31;28(5):554–67.
17. Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduct Target Ther. 2023 May 25;8(1):217.
18. Susa F, Arpicco S, Pirri CF, Limongi T. An Overview on the Physiopathology of the Blood–Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery. Pharmaceutics. 2024 Jun 22;16(7):849.
19. Poitelon Y, Kopec AM, Belin S. Myelin Fat Facts: An Overview of Lipids and Fatty Acid Metabolism. Cells. 2020 Mar 27;9(4):812.
20. Torres M, Parets S, Fernández-Díaz J, Beteta-Göbel R, Rodríguez-Lorca R, Román R, et al. Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. Membranes (Basel). 2021 Nov 24;11(12):919.
21. Adibhatla RM, Hatcher JF. Role Of Lipids In Brain Injury And Diseases. Future Lipidol. 2007 Aug 1;2(4):403–22.
22. Akyol O, Akyol S, Chou MC, Chen S, Liu CK, Selek S, et al. Lipids and lipoproteins may play a role in the neuropathology of Alzheimer’s disease. Front Neurosci. 2023 Nov 16;17.
23. Lim WLF, Martins IJ, Martins RN. The Involvement of Lipids in Alzheimer’s Disease. Journal of Genetics and Genomics. 2014 May;41(5):261–74.
24. Xiang Y, Lam SM, Shui G. What can lipidomics tell us about the pathogenesis of Alzheimer disease? Biol Chem. 2015 Dec 1;396(12):1281–91.
25. Kalli E. Nutritional Lipidomics in Alzheimer’s Disease. In 2020. p. 95–104.
26. Di Paolo G, Kim TW. Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci. 2011 May 30;12(5):284–96.
27. Zarrouk A, Debbabi M, Bezine M, Karym EM, Badreddine A, Rouaud O, et al. Lipid Biomarkers in Alzheimer’s Disease. Curr Alzheimer Res. 2018 Feb 22;15(4):303–12.
28. Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer’s Disease. Int J Mol Sci. 2020 Feb 22;21(4):1505.
29. Matsuzaki T, Sasaki K, Hata J, Hirakawa Y, Fujimi K, Ninomiya T, et al. Association of Alzheimer disease pathology with abnormal lipid metabolism. Neurology. 2011 Sep 13;77(11):1068–75.
30. Yin F. Lipid metabolism and Alzheimer’s disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J. 2023 Mar 18;290(6):1420–53.
31. Reed B, Villeneuve S, Mack W, DeCarli C, Chui HC, Jagust W. Associations Between Serum Cholesterol Levels and Cerebral Amyloidosis. JAMA Neurol. 2014 Feb 1;71(2):195.
32. Popp J, Lewczuk P, Kölsch H, Meichsner S, Maier W, Kornhuber J, et al. Cholesterol metabolism is associated with soluble amyloid precursor protein production in Alzheimer’s disease. J Neurochem. 2012 Oct 23;123(2):310–6.
33. Tang Q, Wang F, Yang J, Peng H, Li Y, Li B, et al. Revealing a Novel Landscape of the Association Between Blood Lipid Levels and Alzheimer’s Disease: A Meta-Analysis of a Case-Control Study. Front Aging Neurosci. 2020 Feb 5;11.
34. Proitsi P, Kim M, Whiley L, Simmons A, Sattlecker M, Velayudhan L, et al. Association of blood lipids with Alzheimer’s disease: A comprehensive lipidomics analysis. Alzheimer’s & Dementia. 2017 Feb 28;13(2):140–51.
35. Wei J, Wong LC, Boland S. Lipids as Emerging Biomarkers in Neurodegenerative Diseases. Int J Mol Sci. 2023 Dec 21;25(1):131.
36. Shamim A, Mahmood T, Ahsan F, Kumar A, Bagga P. Lipids: An insight into the neurodegenerative disorders. Clin Nutr Exp. 2018 Aug;20:1–19.
37. Saedi S, Hemmati-Dinarvand M, Barmaki H, Mokhtari Z, Musavi H, Valilo M, et al. Serum lipid profile of Parkinson’s disease patients: A study from the Northwest of Iran. Caspian J Intern Med. 2021 Mar;12(2):155–61.
38. Alomari MA, Khalil H, Khabour OF, Alzoubi KH. Lipid profile in Parkinson’s disease: The potential role of brain-derived neurotrophic factor. Life Sci. 2022 Dec;311:121144.
39. Macías-García D, Periñán MT, Muñoz-Delgado L, Jimenez-Jaraba MV, Labrador-Espinosa MÁ, Jesús S, et al. Serum lipid profile among sporadic and familial forms of Parkinson’s disease. NPJ Parkinsons Dis. 2021 Jul 16;7(1):59.
40. Fais M, Dore A, Galioto M, Galleri G, Crosio C, Iaccarino C. Parkinson’s Disease-Related Genes and Lipid Alteration. Int J Mol Sci. 2021 Jul 16;22(14):7630.
41. Xicoy H, Wieringa B, Martens GJM. The Role of Lipids in Parkinson’s Disease. Cells. 2019 Jan 7;8(1).
42. Fais M, Dore A, Galioto M, Galleri G, Crosio C, Iaccarino C. Parkinson’s Disease-Related Genes and Lipid Alteration. Int J Mol Sci. 2021 Jul 16;22(14).
43. Leoni V, Caccia C. The impairment of cholesterol metabolism in Huntington disease. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2015 Aug;1851(8):1095–105.
44. González‐Guevara E, Cárdenas G, Pérez‐Severiano F, Martínez‐Lazcano JC. Dysregulated Brain Cholesterol Metabolism Is Linked to Neuroinflammation in Huntington’s Disease. Movement Disorders. 2020 Jul 15;35(7):1113–27.
45. Ghosh R, Tabrizi SJ. Huntington disease. In 2018. p. 255–78.
46. Graham SF, Pan X, Yilmaz A, Macias S, Robinson A, Mann D, et al. Targeted biochemical profiling of brain from Huntington’s disease patients reveals novel metabolic pathways of interest. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2018 Jul;1864(7):2430–7.
47. Phillips GR, Hancock SE, Jenner AM, McLean C, Newell KA, Mitchell TW. Phospholipid Profiles Are Selectively Altered in the Putamen and White Frontal Cortex of Huntington’s Disease. Nutrients. 2022 May 16;14(10):2086.
48. Markianos M, Panas M, Kalfakis N, Vassilopoulos D. Low plasma total cholesterol in patients with Huntington’s disease and first-degree relatives. Mol Genet Metab. 2008 Mar;93(3):341–6.
49. Chang KH, Cheng ML, Lo CJ, Fan CM, Wu YR, Chen CM. Alternations of Lipoprotein Profiles in the Plasma as Biomarkers of Huntington’s Disease. Cells. 2023 Jan 20;12(3):385.
50. Grad LI, Rouleau GA, Ravits J, Cashman NR. Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Cold Spring Harb Perspect Med. 2017 Aug 1;7(8).
51. Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, et al. Amyotrophic lateral sclerosis. The Lancet. 2022 Oct;400(10360):1363–80.
52. Liu J, Luo X, Chen X, Shang H. Lipid Profile in Patients With Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Front Neurol. 2020 Oct 15;11.
53. Rafiq MK, Lee E, Bradburn M, McDermott CJ, Shaw PJ. Effect of lipid profile on prognosis in the patients with amyotrophic lateral sclerosis: Insights from the olesoxime clinical trial. Amyotroph Lateral Scler Frontotemporal Degener. 2015 Nov 27;16(7–8):478–84.
54. Huang R, Guo X, Chen X, Zheng Z, Wei Q, Cao B, et al. The serum lipid profiles of amyotrophic lateral sclerosis patients: A study from south-west China and a meta-analysis. Amyotroph Lateral Scler Frontotemporal Degener. 2015 Aug 27;16(5–6):359–65.
55. Michels S, Kurz D, Rosenbohm A, Peter RS, Just S, Bäzner H, et al. Association of blood lipids with onset and prognosis of amyotrophic lateral sclerosis: results from the ALS Swabia registry. J Neurol. 2023 Jun;270(6):3082–90.
56. Kuhlmann T, Antel J. Multiple sclerosis: 2023 update. Free Neuropathol. 2023 Jan;4.
57. Papiri G, D’Andreamatteo G, Cacchiò G, Alia S, Silvestrini M, Paci C, et al. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr Issues Mol Biol. 2023 Feb 8;45(2):1443–70.
58. Kearney H, Miller DH, Ciccarelli O. Spinal cord MRI in multiple sclerosis--diagnostic, prognostic and clinical value. Nat Rev Neurol. 2015 Jun;11(6):327–38.
59. Ford H. Clinical presentation and diagnosis of multiple sclerosis. Clin Med (Lond). 2020 Jul;20(4):380–3.
60. Murali N, Browne RW, Fellows Maxwell K, Bodziak ML, Jakimovski D, Hagemeier J, et al. Cholesterol and neurodegeneration: longitudinal changes in serum cholesterol biomarkers are associated with new lesions and gray matter atrophy in multiple sclerosis over 5 years of follow-up. Eur J Neurol. 2020 Jan;27(1):188-e4.
61. SEFEROGLU M, KOCA N. Evaluation of the relationship between serum cholesterol levels and multiple sclerosis disease activity. The European Research Journal. 2020 Mar 4;6(2):163–8.
62. Podbielska M, O’Keeffe J, Pokryszko-Dragan A. New Insights into Multiple Sclerosis Mechanisms: Lipids on the Track to Control Inflammation and Neurodegeneration. Int J Mol Sci. 2021 Jul 7;22(14).
63. Vuletic S, Kennedy H, Albers JJ, Killestein J, Vrenken H, Lütjohann D, et al. Cerebrospinal fluid apolipoprotein E and phospholipid transfer protein activity are reduced in multiple sclerosis; relationships with the brain MRI and CSF lipid variables. Mult Scler Relat Disord. 2014 Jul 1;3(4):533–41.
64. Teunissen CE, Dijkstra CD, Polman CH, Hoogervorst ELJ, von Bergmann K, Lütjohann D. Decreased levels of the brain specific 24S-hydroxycholesterol and cholesterol precursors in serum of multiple sclerosis patients. Neurosci Lett. 2003 Aug 28;347(3):159–62.
65. Weinstock-Guttman B, Zivadinov R, Mahfooz N, Carl E, Drake A, Schneider J, et al. Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J Neuroinflammation. 2011 Oct 4;8:127.
66. Tettey P, Simpson S, Taylor B, Blizzard L, Ponsonby AL, Dwyer T, et al. An adverse lipid profile is associated with disability and progression in disability, in people with MS. Mult Scler. 2014 Nov;20(13):1737–44.
67. de la Rubia Ortí JE, Platero Armero JL, Cuerda-Ballester M, Sanchis-Sanchis CE, Navarro-Illana E, Lajara-Romance JM, et al. Lipid Profile in Multiple Sclerosis: Functional Capacity and Therapeutic Potential of Its Regulation after Intervention with Epigallocatechin Gallate and Coconut Oil. Foods. 2023 Oct 11;12(20):3730.
68. Hernández-Ledesma AL, Rodríguez-Méndez AJ, Gallardo-Vidal LS, García-Gasca T, Alatorre-Cruz JM, García-Solís P, et al. Lipid profile: causal relationship on cognitive performance in multiple sclerosis? Mol Biol Rep. 2020 Dec 1;47(12):9667–76.