Development of a Heterotopic Zebrafish Model for Real-Time Observation of Retinoblastoma Tumor Growth

Document Type : Original Research

Authors
1 1. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
2 1. Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
Abstract
Introduction: Retinoblastoma, the most prevalent pediatric eye cancer, arises from mutations in the RB1 gene, leading to the uncontrolled proliferation of retinal cells. This study introduces a heterotopic retinoblastoma model utilizing zebrafish, focusing on injecting the Y79 retinoblastoma cell line into the vitreous cavity for real-time tumor observation. Methods: By leveraging the transparent embryos and rapid eye development of zebrafish, we tracked the establishment and growth of fluorescently labeled tumors. Results: Results confirm tumor formation within three days, underscoring the model's relevance for in vivo studies. The zebrafish model capitalizes on the ease of maintenance, transparency for direct visualization, and genetic tractability, offering significant potential for high-throughput screening and therapeutic assessments. Conclusion: As the field progresses, this model promises to enhance our understanding of retinoblastoma biology and facilitate the discovery of effective treatments, addressing the critical need for innovative approaches in pediatric oncology

Keywords

Subjects


1. Dimaras, H., et al., Retinoblastoma. The Lancet, 2012. 379(9824): p. 1436-1446.
2. Zhao, J., et al., Clinical presentation and group classification of newly diagnosed intraocular retinoblastoma in China. British Journal of Ophthalmology, 2011. 95(10): p. 1372-1375.
3. Marković, L., et al., Genetics in ophthalmology: molecular blueprints of retinoblastoma. Human Genomics, 2023. 17(1): p. 82.
4. Albert, D.M., Historic review of retinoblastoma. Ophthalmology, 1987. 94(6): p. 654-662.
5. Bremner, R., Retinoblastoma, an inside job. Cell, 2009. 137(6): p. 992-994.
6. Xu, X.L., et al., Retinoblastoma has properties of a cone precursor tumor and depends upon cone-specific MDM2 signaling. Cell, 2009. 137(6): p. 1018-1031.
7. Bremner, R. and J. Sage, The origin of human retinoblastoma. Nature, 2014. 514(7522): p. 313-313.
8. Kaewkhaw, R. and D. Rojanaporn, Retinoblastoma: etiology, modeling, and treatment. Cancers, 2020. 12(8): p. 2304.
9. Balmer, A., L. Zografos, and F. Munier, Diagnosis and current management of retinoblastoma. Oncogene, 2006. 25(38): p. 5341-5349.
10. Chévez-Barrios, P., et al., Metastatic and nonmetastatic models of retinoblastoma. The American journal of pathology, 2000. 157(4): p. 1405-1412.
11. Fabian, I.D., A. Reddy, and M.S. Sagoo, Classification and staging of retinoblastoma. Community eye health, 2018. 31(101): p. 11-13.
12. Ancona-Lezama, D., L.A. Dalvin, and C.L. Shields, Modern treatment of retinoblastoma: A 2020 review. Indian journal of ophthalmology, 2020. 68(11): p. 2356-2365.
13. Mendoza, P.R. and H.E. Grossniklaus, Therapeutic options for retinoblastoma. Cancer Control, 2016. 23(2): p. 99-109.
14. Mendel, T.A. and A.B. Daniels, Animal models in retinoblastoma research. Clinical Ophthalmic Oncology: Retinoblastoma, 2019: p. 79-97.
15. Saengwimol, D., et al., A three-dimensional organoid model recapitulates tumorigenic aspects and drug responses of advanced human retinoblastoma. Scientific reports, 2018. 8(1): p. 15664.
16. Liu, H., et al., Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. Proceedings of the National Academy of Sciences, 2020. 117(52): p. 33628-33638.
17. Norrie, J.L., et al., Retinoblastoma from human stem cell-derived retinal organoids. Nature Communications, 2021. 12(1): p. 4535.
18. Richardson, R., et al., The zebrafish eye—a paradigm for investigating human ocular genetics. Eye, 2017. 31(1): p. 68-86.
19. Chhetri, J., G. Jacobson, and N. Gueven, Zebrafish—on the move towards ophthalmological research. Eye, 2014. 28(4): p. 367-380.
20. Reid, T.W., et al., Characteristics of an established cell line of retinoblastoma. Journal of the National Cancer Institute, 1974. 53(2): p. 347-360.
21. Windle, J.J., et al., Retinoblastoma in transgenic mice. Nature, 1990. 343(6259): p. 665-669.
22. Marcus, D.M., et al., Trilateral tumors in four different lines of transgenic mice expressing SV40 T-antigen. Investigative ophthalmology & visual science, 1996. 37(2): p. 392-396.
23. Al-Ubaidi, M.R., et al., Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. The Journal of cell biology, 1992. 119(6): p. 1681-1687.
24. Pajovic, S., et al., The TAg-RB murine retinoblastoma cell of origin has immunohistochemical features of differentiated Müller glia with progenitor properties. Investigative ophthalmology & visual science, 2011. 52(10): p. 7618-7624.
25. Donovan, S.L., et al., Compensation by tumor suppressor genes during retinal development in mice and humans. BMC biology, 2006. 4: p. 1-21.
26. Dannenberg, J.-H., et al., Tissue-specific tumor suppressor activity of retinoblastoma gene homologs p107 and p130. Genes & development, 2004. 18(23): p. 2952-2962.
27. Zhang, J., B. Schweers, and M.A. Dyer, The first knockout mouse model of retinoblastoma. Cell cycle, 2004. 3(7): p. 950-957.
28. Xie, C., et al., Co-deleting Pten with Rb in retinal progenitor cells in mice results in fully penetrant bilateral retinoblastomas. Molecular cancer, 2015. 14: p. 1-11.
29. McEvoy, J., et al., Coexpression of normally incompatible developmental pathways in retinoblastoma genesis. Cancer cell, 2011. 20(2): p. 260-275.
30. Wu, N., et al., A mouse model of MYCN-driven retinoblastoma reveals MYCN-independent tumor reemergence. The Journal of clinical investigation, 2017. 127(3): p. 888-898.
31. Lancaster, M.A. and J.A. Knoblich, Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014. 345(6194): p. 1247125.
32. Brodowska, K., et al., Effects of metformin on retinoblastoma growth in vitro and in vivo. International Journal of Oncology, 2014. 45(6): p. 2311-2324.
33. Theodoropoulou, S., et al., Aminoimidazole carboxamide ribonucleotide (AICAR) inhibits the growth of retinoblastoma in vivo by decreasing angiogenesis and inducing apoptosis. PloS one, 2013. 8(1): p. e52852.
34. Aerts, I., et al., In vivo efficacy of photodynamic therapy in three new xenograft models of human retinoblastoma. Photodiagnosis and photodynamic therapy, 2010. 7(4): p. 275-283.
35. Tschulakow, A.V., et al., Establishment of a novel retinoblastoma (Rb) nude mouse model by intravitreal injection of human Rb Y79 cells–comparison of in vivo analysis versus histological follow up. Biology Open, 2016. 5(11): p. 1625-1630.
36. Laurie, N.A., et al., Topotecan combination chemotherapy in two new rodent models of retinoblastoma. Clinical Cancer Research, 2005. 11(20): p. 7569-7578.
37. McConnell, A.M., H.R. Noonan, and L.I. Zon, Reeling in the zebrafish cancer models. Annual Review of Cancer Biology, 2021. 5(1): p. 331-350.
38. Hason, M. and P. Bartůněk, Zebrafish models of cancer—new insights on modeling human cancer in a non-mammalian vertebrate. Genes, 2019. 10(11): p. 935.
39. Rosa, J.G.S., M. Lopes-Ferreira, and C. Lima, An overview towards zebrafish larvae as a model for ocular diseases. International Journal of Molecular Sciences, 2023. 24(6): p. 5387.
40. Jo, D.H., et al., Orthotopic transplantation of retinoblastoma cells into vitreous cavity of zebrafish for screening of anticancer drugs. Molecular Cancer, 2013. 12: p. 1-9.
41. Chen, X., et al., Invasiveness and metastasis of retinoblastoma in an orthotopic zebrafish tumor model. Scientific Reports, 2015. 5(1): p. 10351.
42. Maricic, N., et al., Zebrafish as an orthotopic tumor model for retinoblastoma mimicking routes of human metastasis. Cancers, 2022. 14(23): p. 5814.