Assessing Inflammatory Pain in Animal Studies: An Overview of the Formalin Test

Document Type : Systematic Review

Authors
Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
Abstract
Pain, a complex and debilitating experience, significantly impacts the quality of life. It is considered as a primary reason for seeking medical care. Inflammatory pain, resulting from tissue injury, is characterized by the release of inflammatory mediators that activate nociceptive pathways, leading to heightened sensitivity. Assessment of inflammatory pain is necessary for understanding its mechanism and developing effective treatment strategies. This study provides an overview of the formalin test, a widely used animal model for assessing inflammatory pain. The test comprises distinct phases (phase I, interphase, and phase II), which reflect acute and tonic pain responses. As a tool for evaluating analgesic efficacy and pain mechanisms, the formalin test has been instrumental in advancing our understanding of pain biology and the development of novel therapeutic approaches.

Keywords

Subjects


1. Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi-Kangevari M, Abd-Allah F, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22.
2. Gaskin DJ, Richard P. The economic costs of pain in the United States. J pain. 2012 Aug;13(8):715–24.
3. Wang M, Thyagarajan B. Pain pathways and potential new targets for pain relief. Biotechnol Appl Biochem. 2022 Feb 1;69(1):110–23.
4. Turk DC, Okifuji A. Psychological factors in chronic pain: evolution and revolution. J Consult Clin Psychol. 2002;70(3):678–90.
5. Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med. 2004 Mar 16;140(6):441–51.
6. Kidd BL, Urban LA. Mechanisms of inflammatory pain. Br J Anaesth. 2001;87(1):3–11.
7. Lipnik-Stangelj M. Mediators of Inflammation as Targets for Chronic Pain Treatment. Mediators Inflamm. 2013 Jan 1;2013(1):783235.
8. Ringkamp M, Dougherty PM, Raja SN. Anatomy and Physiology of the Pain Signaling Process. Essentials Pain Med. 2018 Jan 1;3-10.e1.
9. Pawar V, Patel S. Animal Models in Pain Research. Anim Model Res. 2024;333–61.
10. IASP Announces Revised Definition of Pain - International Association for the Study of Pain (IASP) [Internet]. [cited 2024 December 10]. Available from: https://www.iasp-pain.org/publications/iasp-news/iasp-announces-revised-definition-of-pain/
11. Larson CM, Wilcox GL, Fairbanks CA. The Study of Pain in Rats and Mice. Comp Med. 2019 Dec 1;69(6):555.
12. Ellison DL. Physiology of Pain. Crit Care Nurs Clin North Am. 2017 Dec 1;29(4):397–406.
13. Kuner R, Kuner T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol Rev. 2021 Jan 1;101(1):213–58.
14. Sullere S, Kunczt A, McGehee DS. A cholinergic circuit that relieves pain despite opioid tolerance. Neuron. 2023 Nov 1;111(21):3414-3434.e15.
15. Alami K, Jalali F, Azizi H. Early Life History of Drug Exposure Has Long Lasting Effect on Pain Sensitivity. Int J Musculoskelet Pain Prev. 2023 Oct 10;8(3):900–3.
16. Alami K, Fathollahi Y, Hashemizadeh S, Mosleh M, Semnanian S, Mousavi SY, et al. Microglia-dependent peripheral neuropathic pain in adulthood following adolescent exposure to morphine in male rats. Neuropharmacology. 2025;263:110211.
17. Abd-Elsayed A, Deer TR. Different Types of Pain. Pain. 2019;15–6.
18. Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain. 2019 Jan 1;160(1):19–27.
19. Woolf CJ. What is this thing called pain? J Clin Invest. 2010 Nov 1;120(11):3742.
20. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and Molecular Mechanisms of Pain. Cell. 2009 Oct 16;139(2):267.
21. Zhang YH, Adamo D, Liu H, Wang Q, Wu W, Zheng YL, et al. Editorial: Inflammatory pain: mechanisms, assessment, and intervention. Front Mol Neurosci. 2023;16:1286215.
22. Muley MM, Krustev E, Mcdougall JJ. Preclinical Assessment of Inflammatory Pain. CNS Neurosci Ther. 2016 Feb 1;22(2):88.
23. Chen L, Yang G, Grosser T. Prostanoids and inflammatory pain. Prostaglandins Other Lipid Mediat. 2013 Jul 1;104–105:58–66.
24. Latremoliere A, Woolf CJ. Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. J Pain. 2009 Sep 1;10(9):895–926.
25. Dubuisson D, Dennis SG. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 1977;4(2):161–74.
26. Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain. 1992;51(1):5–17.
27. Sawynok J, Liu XJ. The Formalin Test: Characteristics and Usefulness of the Model. Rev Analg. 2008 Apr 2;7(2):145–63.
28. Dubuisson D, Dennis SG. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain. 1977;4(C):161–74.
29. Clavelou P, Pajot J, Dallel R, Raboisson P. Application of the formalin test to the study of orofacial pain in the rat. Neurosci Lett. 1989 Sep 11;103(3):349–53.
30. Fathi M, Hosseinmardi N, Rohampour K, Janahmadi M, Sonboli A, Zaringhalam J. Anti-nociceptive effect of Tanacetum Fisherae on formalin-induced inflammatory pain in rats. Physiol Pharmacol. 2016;20(3):189–96.
31. Rozisky JR, Laste G, De MacEdo IC, Santos VS, Krolow R, Noschang C, et al. Neonatal morphine administration leads to changes in hippocampal BDNF levels and antioxidant enzyme activity in the adult life of rats. Neurochem Res. 2013 Mar;38(3):494–503.
32. Yamamoto T, Nozaki-Taguchi N, Chiba T. Analgesic effect of intrathecally administered orexin-A in the rat formalin test and in the rat hot plate test. Br J Pharmacol. 2002 Sep 1;137(2):170–6.
33. Ray SB, Yaksh TL. Spinal antinociceptive action of loperamide is mediated by opioid receptors in the formalin test in rats. Neurosci Lett. 2008 Dec 31;448(3):260–2.
34. Alami K, Ghasemi E, Semnanian S, Azizi H. Adolescent morphine exposure changes opioid endogenous response to pain in rat model of formalin test. Dev Psychobiol. 2023;(434):1–5.
35. Pachenari N, Azizi H, Ghasemi E, Azadi M, Semnanian S. Exposure to opiates in male adolescent rats alters pain perception in the male offspring. Behav Pharmacol. 2018;29(2 and 3-Spec Issue):255–60.
36. Stucky CL, Dubin AE, Jeske NA, Malin SA, McKemy DD, Story GM. Roles of transient receptor potential channels in pain. Brain Res Rev. 2009 Apr;60(1):2–23.
37. McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, et al. TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13525–30.
38. Dickenson AH, Sullivan AF. Peripheral origins and central modulation of subcutaneous formalin-induced activity of rat dorsal horn neurones. Neurosci Lett. 1987 Dec 16;83(1–2):207–11.
39. Yamamoto T, Nozaki-Taguchi N. The role of cyclooxygenase-1 and -2 in the rat formalin test. Anesth Analg. 2002;94(4):962–7.
40. Hunskaar S, Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain. 1987;30(1):103–14.
41. Henry JL, Yashpal K, Pitcher GM, Coderre TJ. Physiological evidence that the “interphase” in the formalin test is due to active inhibition. Pain. 1999 Jul 1;82(1):57–63.
42. Abbott F V, Franklin KBJ, Westbrook RF. The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain. 1995;60(1):91–102.
43. Aloisi AM, Lupo C, Carli G. Effects of formalin-induced pain on exploratory behaviour in rabbits. Neuroreport. 1993;4(6):739–42.
44. Alreja M, Mutalik P, Nayar U, Manchanda SK. The formalin test: a tonic pain model in the primate. Pain. 1984;20(1):97–105.
45. Leite-Panissi CRA, Rodrigues CL, Brentegani MR, Menescal-De-Oliveira L. Endogenous opiate analgesia induced by tonic immobility in guinea pigs. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol. 2001;34(2):245–50.
46. Hoffmann T, Klemm F, I Kichko T, Sauer SK, Kistner K, Riedl B, et al. The formalin test does not probe inflammatory pain but excitotoxicity in rodent skin. Physiol Rep. 2022 Mar 1;10(6).
47. McLaughlin CR, Dewey WL. A comparison of the antinociceptive effects of opioid agonists in neonatal and adult rats in phasic and tonic nociceptive tests. Pharmacol Biochem Behav. 1994 Dec 1;49(4):1017–23.
48. Miranda HF, Noriega V, Sierralta F, Poblete P, Aranda N, Prieto JC. Non-steroidal Anti-inflammatory Drugs in Tonic, Phasic and Inflammatory Mouse Models. Drug Res (Stuttg). 2019;69(10):572–8.
49. Dciga-Campos M, Jaramillo-Morales OA, Espinosa-Juárez JV, Aguilera-Martínez ME, Ventura-Martínez R, López-Muñoz FJ. N-palmitoylethanolamide synergizes the antinociception of morphine and gabapentin in the formalin test in mice. J Pharm Pharmacol. 2023 Sep 1;75(9):1154–62.
50. Yoon MH, Choi J. Pharmacologic Interaction between Cannabinoid and either Clonidine or Neostigmine in the Rat Formalin Test. Anesthesiology. 2003 Sep 1;99(3):701–7.
51. Luszczki JJ, Kolacz A, Czuczwar M, Przesmycki K, Czuczwar SJ. Synergistic interaction of gabapentin with tiagabine in the formalin test in mice: An isobolographic analysis. Eur J Pain. 2009 Aug 1;13(7):665–72.