1. Titova, N., Qamar, M. A., & Chaudhuri, K. R. (2017). The Nonmotor Features of Parkinson's Disease. International review of neurobiology, 132, 33–54.
2. Zhang, H., Wang, Z., Qi, S., Wu, J., & Li, Z. (2020). Awareness, Treatment, and Rehabilitation of Elderly with Parkinson's Disease - China, 2015-2017. China CDC weekly, 2(15), 241–244.
3. Wanneveich, M., Moisan, F., Jacqmin-Gadda, H., Elbaz, A., & Joly, P. (2018). Projections of prevalence, lifetime risk, and life expectancy of Parkinson's disease (2010-2030) in France. Movement disorders: official journal of the Movement Disorder Society, 33(9), 1449–1455.
4. Lee, A., & Gilbert, R. M. (2016). Epidemiology of Parkinson Disease. Neurologic clinics, 34(4), 955–965.
5. Alwani, A., Maziarz, K., Burda, G., Jankowska-Kiełtyka, M., Roman, A., Łyszczarz, G., Er, S., Barut, J., Barczyk-Woźnicka, O., Pyza, E., Kreiner, G., Nalepa, I., & Chmielarz, P. (2023). Investigating the potential effects of α-synuclein aggregation on susceptibility to chronic stress in a mouse Parkinson's disease model. Pharmacological reports : PR, 75(6), 1474–1487.
6. Wang, X. L., Feng, S. T., Wang, Y. T., Yuan, Y. H., Li, Z. P., Chen, N. H., Wang, Z. Z., & Zhang, Y. (2022). Mitophagy, a Form of Selective Autophagy, Plays an Essential Role in Mitochondrial Dynamics of Parkinson's Disease. Cellular and molecular neurobiology, 42(5), 1321–1339.
7. Kim, J., Daadi, E. W., Oh, T., Daadi, E. S., & Daadi, M. M. (2022). Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes, 13(11), 1937.
8. Kim, S., Pajarillo, E., Nyarko-Danquah, I., Aschner, M., & Lee, E. (2023). Role of Astrocytes in Parkinson's Disease Associated with Genetic Mutations and Neurotoxicants. Cells, 12(4), 622.
9. Duffy, M. F., Collier, T. J., Patterson, J. R., Kemp, C. J., Fischer, D. L., Stoll, A. C., & Sortwell, C. E. (2018). Quality Over Quantity: Advantages of Using Alpha-Synuclein Preformed Fibril Triggered Synucleinopathy to Model Idiopathic Parkinson's Disease. Frontiers in neuroscience, 12, 621.
10. Chia, S. J., Tan, E. K., & Chao, Y. X. (2020). Historical Perspective: Models of Parkinson's Disease. International journal of molecular sciences, 21(7), 2464.
11. Yu, Z., Shi, H., Zhang, J., Ma, C., He, C., Yang, F., & Zhao, L. (2024). ROLE OF MICROGLIA IN SEPSIS-ASSOCIATED ENCEPHALOPATHY PATHOGENESIS: AN UPDATE. Shock (Augusta, Ga.), 61(4), 498–508.
12. Shao, F., Wang, X., Wu, H., Wu, Q., & Zhang, J. (2022). Microglia and Neuroinflammation:
Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Frontiers in aging neuroscience, 14, 825086.
13. Chen, Z., & Trapp, B. D. (2016). Microglia and neuroprotection. Journal of neurochemistry, 136 Suppl 1, 10–17.
14. Lee, J. W., Chun, W., Lee, H. J., Kim, S. M., Min, J. H., Kim, D. Y., Kim, M. O., Ryu, H. W., & Lee, S. U. (2021). The Role of Microglia in the Development of Neurodegenerative Diseases. Biomedicines, 9(10), 1449.
15. Andonian, B. J., Hippensteel, J. A., Abuabara, K., Boyle, E. M., Colbert, J. F., Devinney, M. J., Faye, A. S., Kochar, B., Lee, J., Litke, R., Nair, D., Sattui, S. E., Sheshadri, A., Sherman, A. N., Singh, N., Zhang, Y., & LaHue, S. C. (2024). Inflammation and aging-related disease: A transdisciplinary inflammaging framework. GeroScience, 10.1007/s11357-024-01364-0. Advance online publication.
16. Talwar, P., Kushwaha, S., Gupta, R., & Agarwal, R. (2019). Systemic Immune Dyshomeostasis Model and Pathways in Alzheimer's Disease. Frontiers in aging neuroscience, 11, 290.
17. Liston, A., & Masters, S. L. (2017). Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nature reviews. Immunology, 17(3), 208–214.
18. Boyd, R.J., Avramopoulos, D., Jantzie, L.L. et al. Neuroinflammation represents a common theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. J Neuroinflammation 19, 223 (2022).
19. Mayne, K., White, J. A., McMurran, C. E., Rivera, F. J., & de la Fuente, A. G. (2020). Aging and Neurodegenerative Disease: Is the Adaptive Immune System a Friend or Foe?. Frontiers in aging neuroscience, 12, 572090.
20. Louveau, A., Harris, T. H., & Kipnis, J. (2015). Revisiting the Mechanisms of CNS Immune Privilege. Trends in immunology, 36(10), 569–577.
21. DiSabato, D. J., Quan, N., & Godbout, J. P. (2016). Neuroinflammation: the devil is in the details. Journal of neurochemistry, 139 Suppl 2(Suppl 2), 136–153.
22. Sweeney, M. D., Kisler, K., Montagne, A., Toga, A. W., & Zlokovic, B. V. (2018). The role of brain vasculature in neurodegenerative disorders. Nature neuroscience, 21(10), 1318–1331.
23. Takata, F., Nakagawa, S., Matsumoto, J., & Dohgu, S. (2021). Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Frontiers in cellular neuroscience, 15, 661838.
24. Ju, F., Ran, Y., Zhu, L., Cheng, X., Gao, H., Xi, X., Yang, Z., & Zhang, S. (2018). Increased BBB Permeability Enhances Activation of Microglia and Exacerbates Loss of Dendritic Spines After Transient Global Cerebral Ischemia. Frontiers in cellular neuroscience, 12, 236.
25. Hirbec, H., Rassendren, F., & Audinat, E. (2019). Microglia Reactivity: Heterogeneous Pathological Phenotypes. Methods in molecular biology (Clifton, N.J.), 2034, 41–55.
26. Tremblay, M. È., Lecours, C., Samson, L., Sánchez-Zafra, V., & Sierra, A. (2015). From the Cajal alumni Achúcarro and Río-Hortega to the rediscovery of never-resting microglia. Frontiers in neuroanatomy, 9, 45.
27. Allen, N. J., & Lyons, D. A. (2018). Glia as architects of central nervous system formation and function. Science (New York, N.Y.), 362(6411), 181–185.
28. Wu, Y., & Hirschi, K. K. (2021). Tissue-Resident Macrophage Development and Function. Frontiers in cell and developmental biology, 8, 617879.
29. Gomez Perdiguero, E., Klapproth, K., Schulz, C., Busch, K., Azzoni, E., Crozet, L., Garner, H., Trouillet, C., de Bruijn, M. F., Geissmann, F., & Rodewald, H. R. (2015). Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 518(7540), 547–551.
30. Jucá, P. M., de Almeida Duque, É., Covre, L. H. H., Mariano, K. A. A., & Munhoz, C. D. (2024). Microglia and Systemic Immunity. Advances in neurobiology, 37, 287–302.
31. Colonna, M., & Butovsky, O. (2017). Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annual review of immunology, 35, 441–468.
32. Garaschuk, O., & Verkhratsky, A. (2019). Physiology of Microglia. Methods in molecular biology (Clifton, N.J.), 2034, 27–40.
33. Ho M. S. (2019). Microglia in Parkinson's Disease. Advances in experimental medicine and biology, 1175, 335–353.
34. Wake, H., Hashimoto, A., Kato, D., & Takeda, I. (2023). Nihon yakurigaku zasshi. Folia pharmacologica Japonica, 158(5), 359–361.
35. Kabba, J. A., Xu, Y., Christian, H., Ruan, W., Chenai, K., Xiang, Y., Zhang, L., Saavedra, J. M., & Pang, T. (2018). Microglia: Housekeeper of the Central Nervous System. Cellular and molecular neurobiology, 38(1), 53–71.
36. Darwish, S. F., Elbadry, A. M. M., Elbokhomy, A. S., Salama, G. A., & Salama, R. M. (2023). The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. Frontiers in aging, 4, 1231706.
37. Borst, K., Dumas, A. A., & Prinz, M. (2021). Microglia: Immune and non-immune functions. Immunity, 54(10), 2194–2208.
38. Orihuela, R., McPherson, C. A., & Harry, G. J. (2016). Microglial M1/M2 polarization and metabolic states. British journal of pharmacology, 173(4), 649–665.
39. Chauhan, P., Sheng, W. S., Hu, S., Prasad, S., & Lokensgard, J. R. (2021). Differential Cytokine-Induced Responses of Polarized Microglia. Brain sciences, 11(11), 1482.
40. Guo, S., Wang, H., & Yin, Y. (2022). Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Frontiers in aging neuroscience, 14, 815347.
41. Ward, R. J., Dexter, D. T., & Crichton, R. R. (2015). Ageing, neuroinflammation and neurodegeneration. Frontiers in bioscience (Scholar edition), 7(1), 189–204.
42. Oh, Y., Jung, H. J., Hong, S., Cho, Y., Park, J., Cho, D., & Kim, T. S. (2022). Aminoacyl transfer ribonucleic acid synthetase complex-interacting multifunctional protein 1 induces microglial activation and M1 polarization via the mitogen-activated protein kinase/nuclear factor-kappa B signaling pathway. Frontiers in cellular neuroscience, 16, 977205.
43. Nguyen, H. M., Blomster, L. V., Christophersen, P., & Wulff, H. (2017). Potassium channel expression and function in microglia: Plasticity and possible species variations. Channels (Austin, Tex.), 11(4), 305–315.
44. Li, J., Shui, X., Sun, R., Wan, L., Zhang, B., Xiao, B., & Luo, Z. (2021). Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Frontiers in cellular neuroscience, 15, 736310.
45. Li, J., Csakai, A., Jin, J., Zhang, F., & Yin, H. (2016). Therapeutic Developments Targeting Toll-like Receptor-4-Mediated Neuroinflammation. ChemMedChem, 11(2), 154–165.
46. Qin, J., Ma, Z., Chen, X., & Shu, S. (2023). Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Frontiers in neurology, 14, 1103416.
47. Kotenko, S. V., & Pestka, S. (2000). Jak-Stat signal transduction pathway through the eyes of cytokine class II receptor complexes. Oncogene, 19(21), 2557–2565.
48. Baer, C., Squadrito, M. L., Laoui, D., Thompson, D., Hansen, S. K., Kiialainen, A., Hoves, S., Ries, C. H., Ooi, C. H., & De Palma, M. (2016). Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. Nature cell biology, 18(7), 790–802.
49. Strizova, Z., Benesova, I., Bartolini, R., Novysedlak, R., Cecrdlova, E., Foley, L. K., & Striz, I. (2023). M1/M2 macrophages and their overlaps - myth or reality?. Clinical science (London, England : 1979), 137(15), 1067–1093.
50. Shao, F., Wang, X., Wu, H., Wu, Q., & Zhang, J. (2022). Microglia and Neuroinflammation:
Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Frontiers in aging neuroscience, 14, 825086.
51. Charrière, K., Ghzaiel, I., Lizard, G., & Vejux, A. (2021). Involvement of Microglia in Neurodegenerative Diseases: Beneficial Effects of Docosahexahenoic Acid (DHA) Supplied by Food or Combined with Nanoparticles. International Journal of Molecular Sciences, 22(19), 10639.
52. Ana, B. (2024). Aged-Related Changes in Microglia and Neurodegenerative Diseases: Exploring the Connection. Biomedicines, 12(8), 1737.
53. Isik, S., Yeman Kiyak, B., Akbayir, R., Seyhali, R., & Arpaci, T. (2023). Microglia Mediated Neuroinflammation in Parkinson's Disease. Cells, 12(7), 1012.
54. Michell-Robinson, M. A., Touil, H., Healy, L. M., Owen, D. R., Durafourt, B. A., Bar-Or, A., Antel, J. P., & Moore, C. S. (2015). Roles of microglia in brain development, tissue maintenance and repair. Brain : a journal of neurology, 138(Pt 5), 1138–1159.
55. Xu, H., Wang, Z., Li, J., Wu, H., Peng, Y., Fan, L., Chen, J., Gu, C., Yan, F., Wang, L., & Chen, G. (2017). The Polarization States of Microglia in TBI: A New Paradigm for Pharmacological Intervention. Neural plasticity, 2017, 5405104.
56. Fuchs, A. L., Costello, S. M., Schiller, S. M., Tripet, B. P., & Copié, V. (2024). Primary Human M2 Macrophage Subtypes Are Distinguishable by Aqueous Metabolite Profiles. International journal of molecular sciences, 25(4), 2407.
57. Chakrabarti, S., Jana, M., Roy, A., & Pahan, K. (2018). Upregulation of Suppressor of Cytokine Signaling 3 in Microglia by Cinnamic Acid. Current Alzheimer research, 15(10), 894–904.
58. Anders, H. J., & Ryu, M. (2011). Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney international, 80(9), 915–925.
59. Kerneur, C., Cano, C. E., & Olive, D. (2022). Major pathways involved in macrophage polarization in cancer. Frontiers in immunology, 13, 1026954.
60. Rőszer T. (2015). Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators of inflammation, 2015, 816460.
61. Viola, A., Munari, F., Sánchez-Rodríguez, R., Scolaro, T., & Castegna, A. (2019). The Metabolic Signature of Macrophage Responses. Frontiers in immunology, 10, 1462.
62. Subramaniam, S. R., & Federoff, H. J. (2017). Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson's Disease. Frontiers in aging neuroscience, 9, 176.
63. Gu, B., Kaneko, T., Zaw, S. Y. M., Sone, P. P., Murano, H., Sueyama, Y., Zaw, Z. C. T., & Okiji, T. (2019). Macrophage populations show an M1-to-M2 transition in an experimental model of coronal pulp tissue engineering with mesenchymal stem cells. International endodontic journal, 52(4), 504–514.
64. Wei, Y., & Li, X. (2022). Different phenotypes of microglia in animal models of Alzheimer disease. Immunity & ageing : I & A, 19(1), 44.
65. Deczkowska, A., Keren-Shaul, H., Weiner, A., Colonna, M., Schwartz, M., & Amit, I. (2018). Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell, 173(5), 1073–1081.
66. Deczkowska, A., Keren-Shaul, H., Weiner, A., Colonna, M., Schwartz, M., & Amit, I. (2018). Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell, 173(5), 1073–1081.
67. Andersen, M. S., Bandres-Ciga, S., Reynolds, R. H., Hardy, J., Ryten, M., Krohn, L., Gan-Or, Z., Holtman, I. R., Pihlstrøm, L., & International Parkinson's Disease Genomics Consortium (2021). Heritability Enrichment Implicates Microglia in Parkinson's Disease Pathogenesis. Annals of neurology, 89(5), 942–951.
68. Gao, C., Jiang, J., Tan, Y., & Chen, S. (2023). Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal transduction and targeted therapy, 8(1), 359.
69. Joers, V., Tansey, M. G., Mulas, G., & Carta, A. R. (2017). Microglial phenotypes in Parkinson's disease and animal models of the disease. Progress in neurobiology, 155, 57–75.
70. Li, Y., Xia, Y., Yin, S., Wan, F., Hu, J., Kou, L., Sun, Y., Wu, J., Zhou, Q., Huang, J., Xiong, N., & Wang, T. (2021). Targeting Microglial α-Synuclein/TLRs/NF-kappaB/NLRP3 Inflammasome Axis in Parkinson's Disease. Frontiers in immunology, 12, 719807.
71. Wendimu, M. Y., & Hooks, S. B. (2022). Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells, 11(13), 2091.
72. Bridi, J. C., & Hirth, F. (2018). Mechanisms of α-Synuclein Induced Synaptopathy in Parkinson's Disease. Frontiers in neuroscience, 12, 80.
73. Zhang, W., Xiao, D., Mao, Q., & Xia, H. (2023). Role of neuroinflammation in neurodegeneration development. Signal transduction and targeted therapy, 8(1), 267.
74. Deyell, J. S., Sriparna, M., Ying, M., & Mao, X. (2023). The Interplay between α-Synuclein and Microglia in α-Synucleinopathies. International journal of molecular sciences, 24(3), 2477.
75. Fellner, L., Irschick, R., Schanda, K., Reindl, M., Klimaschewski, L., Poewe, W., Wenning, G. K., & Stefanova, N. (2013). Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia, 61(3), 349–360.
76. Kim, C., Ho, D. H., Suk, J. E., You, S., Michael, S., Kang, J., Joong Lee, S., Masliah, E., Hwang, D., Lee, H. J., & Lee, S. J. (2013). Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nature communications, 4, 1562.
77. Choi, I., Zhang, Y., Seegobin, S. P., Pruvost, M., Wang, Q., Purtell, K., Zhang, B., & Yue, Z. (2020). Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nature communications, 11(1), 1386.
78. Harrison, J. K., Jiang, Y., Chen, S., Xia, Y., Maciejewski, D., McNamara, R. K., Streit, W. J., Salafranca, M. N., Adhikari, S., Thompson, D. A., Botti, P., Bacon, K. B., & Feng, L. (1998). Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proceedings of the National Academy of Sciences of the United States of America, 95(18), 10896–10901.
79. Pabon, M. M., Bachstetter, A. D., Hudson, C. E., Gemma, C., & Bickford, P. C. (2011). CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson's disease. Journal of neuroinflammation, 8, 9.
80. Zhang, S., Wang, X. J., Tian, L. P., Pan, J., Lu, G. Q., Zhang, Y. J., Ding, J. Q., & Chen, S. D. (2011). CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson's disease. Journal of neuroinflammation, 8, 154.
81. Chung, Y. C., Shin, W. H., Baek, J. Y., Cho, E. J., Baik, H. H., Kim, S. R., Won, S. Y., & Jin, B. K. (2016). CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson's disease. Experimental & molecular medicine, 48(1), e205.
82. Blauwendraat, C., Nalls, M. A., & Singleton, A. B. (2020). The genetic architecture of Parkinson's disease. The Lancet. Neurology, 19(2), 170–178.
83. Li, J. Q., Tan, L., & Yu, J. T. (2014). The role of the LRRK2 gene in Parkinsonism. Molecular neurodegeneration, 9, 47.
84. Thévenet, J., Pescini Gobert, R., Hooft van Huijsduijnen, R., Wiessner, C., & Sagot, Y. J. (2011). Regulation of LRRK2 expression points to a functional role in human monocyte maturation. PloS one, 6(6), e21519.
85. Schapansky, J., Nardozzi, J. D., Felizia, F., & LaVoie, M. J. (2014). Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Human molecular genetics, 23(16), 4201–4214.
86. Russo, I., Berti, G., Plotegher, N., Bernardo, G., Filograna, R., Bubacco, L., & Greggio, E. (2015). Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells. Journal of neuroinflammation, 12, 230.
87. Lin, Z., Chen, C., Yang, D., Ding, J., Wang, G., & Ren, H. (2021). DJ-1 inhibits microglial activation and protects dopaminergic neurons in vitro and in vivo through interacting with microglial p65.
88. Kim, J. H., Choi, D. J., Jeong, H. K., Kim, J., Kim, D. W., Choi, S. Y., Park, S. M., Suh, Y. H., Jou, I., & Joe, E. H. (2013). DJ-1 facilitates the interaction between STAT1 and its phosphatase, SHP-1, in brain microglia and astrocytes: A novel anti-inflammatory function of DJ-1. Neurobiology of disease, 60, 1–10.
89. Trudler, D., Weinreb, O., Mandel, S. A., Youdim, M. B., & Frenkel, D. (2014). DJ-1 deficiency triggers microglia sensitivity to dopamine toward a pro-inflammatory phenotype that is attenuated by rasagiline. Journal of neurochemistry, 129(3), 434–447.
90. Roodveldt, C., Bernardino, L., Oztop-Cakmak, O., Dragic, M., Fladmark, K. E., Ertan, S., Aktas, B., Pita, C., Ciglar, L., Garraux, G., Williams-Gray, C., Pacheco, R., & Romero-Ramos, M. (2024). The immune system in Parkinson's disease: what we know so far. Brain : a journal of neurology, 147(10), 3306–3324.
91. Tansey, M. G., Wallings, R. L., Houser, M. C., Herrick, M. K., Keating, C. E., & Joers, V. (2022). Inflammation and immune dysfunction in Parkinson disease. Nature reviews. Immunology, 22(11), 657–673.
92. Harms, A. S., Ferreira, S. A., & Romero-Ramos, M. (2021). Periphery and brain, innate and adaptive immunity in Parkinson's disease. Acta neuropathologica, 141(4), 527–545.
93. Harms, A. S., Ferreira, S. A., & Romero-Ramos, M. (2021). Periphery and brain, innate and adaptive immunity in Parkinson's disease. Acta neuropathologica, 141(4), 527–545. https://doi.org/10.1007/s00401-021-02268-5
94. Pey, P., Pearce, R. K., Kalaitzakis, M. E., Griffin, W. S., & Gentleman, S. M. (2014). Phenotypic profile of alternative activation marker CD163 is different in Alzheimer's and Parkinson's disease. Acta neuropathologica communications, 2, 21.
95. Hall, S., Janelidze, S., Surova, Y., Widner, H., Zetterberg, H., & Hansson, O. (2018). Cerebrospinal fluid concentrations of inflammatory markers in Parkinson's disease and atypical parkinsonian disorders. Scientific reports, 8(1), 13276.
96. Liu, S. Y., Qiao, H. W., Song, T. B., Liu, X. L., Yao, Y. X., Zhao, C. S., Barret, O., Xu, S. L., Cai, Y. N., Tamagnan, G. D., Sossi, V., Lu, J., & Chan, P. (2022). Brain microglia activation and peripheral adaptive immunity in Parkinson's disease: a multimodal PET study. Journal of neuroinflammation, 19(1), 209.
97. He, S., Ru, Q., Chen, L., Xu, G., & Wu, Y. (2024). Advances in animal models of Parkinson's disease. Brain research bulletin, 215, 111024.
98. Członkowska, A., Kohutnicka, M., Kurkowska-Jastrzebska, I., & Członkowski, A. (1996). Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson's disease mice model. Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration, 5(2), 137–143.
99. Mount, M. P., Lira, A., Grimes, D., Smith, P. D., Faucher, S., Slack, R., Anisman, H., Hayley, S., & Park, D. S. (2007). Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(12), 3328–3337.
100. Brochard, V., Combadière, B., Prigent, A., Laouar, Y., Perrin, A., Beray-Berthat, V., Bonduelle, O., Alvarez-Fischer, D., Callebert, J., Launay, J. M., Duyckaerts, C., Flavell, R. A., Hirsch, E. C., & Hunot, S. (2009). Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. The Journal of clinical investigation, 119(1), 182–192.
101. Smeyne, R. J., & Jackson-Lewis, V. (2005). The MPTP model of Parkinson's disease. Brain research. Molecular brain research, 134(1), 57–66.
102. Lee, E., Hwang, I., Park, S., Hong, S., Hwang, B., Cho, Y., Son, J., & Yu, J. W. (2019). MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell death and differentiation, 26(2), 213–228.
103. Shao, Q. H., Chen, Y., Li, F. F., Wang, S., Zhang, X. L., Yuan, Y. H., & Chen, N. H. (2019). TLR4 deficiency has a protective effect in the MPTP/probenecid mouse model of Parkinson's disease. Acta pharmacologica Sinica, 40(12), 1503–1512.
104. Song, S. Y., Kim, I. S., Koppula, S., Park, J. Y., Kim, B. W., Yoon, S. H., & Choi, D. K. (2020). 2-Hydroxy-4-Methylbenzoic Anhydride Inhibits Neuroinflammation in Cellular and Experimental Animal Models of Parkinson's Disease. International journal of molecular sciences, 21(21), 8195.
105. Ghosh, A., Roy, A., Liu, X., Kordower, J. H., Mufson, E. J., Hartley, D. M., Ghosh, S., Mosley, R. L., Gendelman, H. E., & Pahan, K. (2007). Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18754–18759.
106. Cicchetti, F., Brownell, A. L., Williams, K., Chen, Y. I., Livni, E., & Isacson, O. (2002). Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. The European journal of neuroscience, 15(6), 991–998.
107. Marinova-Mutafchieva, L., Sadeghian, M., Broom, L., Davis, J. B., Medhurst, A. D., & Dexter, D. T. (2009). Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson's disease. Journal of neurochemistry, 110(3), 966–975.
108. Sun, Y., Hei, M., Fang, Z., Tang, Z., Wang, B., & Hu, N. (2019). High-Mobility Group Box 1 Contributes to Cerebral Cortex Injury in a Neonatal Hypoxic-Ischemic Rat Model by Regulating the Phenotypic Polarization of Microglia. Frontiers in cellular neuroscience, 13, 506.
109. Barcia, C., Ros, C. M., Annese, V., Gómez, A., Ros-Bernal, F., Aguado-Yera, D., Martínez-Pagán, M. E., de Pablos, V., Fernandez-Villalba, E., & Herrero, M. T. (2011). IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease. Cell death & disease, 2(4), e142.
110. Vila-del Sol, V., Punzón, C., & Fresno, M. (2008). IFN-gamma-induced TNF-alpha expression is regulated by interferon regulatory factors 1 and 8 in mouse macrophages. Journal of immunology (Baltimore, Md. : 1950), 181(7), 4461–4470.
111. Gao, H. M., Hong, J. S., Zhang, W., & Liu, B. (2003). Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(4), 1228–1236.
112. Vidović, M., & Rikalovic, M. G. (2022). Alpha-Synuclein Aggregation Pathway in Parkinson's Disease: Current Status and Novel Therapeutic Approaches. Cells, 11(11), 1732.
113. Lee, M. K., Stirling, W., Xu, Y., Xu, X., Qui, D., Mandir, A. S., Dawson, T. M., Copeland, N. G., Jenkins, N. A., & Price, D. L. (2002). Human alpha-synuclein-harboring familial Parkinson's disease-linked Ala-53 --> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8968–8973.
114. Miller, R. M., Kiser, G. L., Kaysser-Kranich, T., Casaceli, C., Colla, E., Lee, M. K., Palaniappan, C., & Federoff, H. J. (2007). Wild-type and mutant alpha-synuclein induce a multi-component gene expression profile consistent with shared pathophysiology in different transgenic mouse models of PD. Experimental neurology, 204(1), 421–432.
115. Solano, R. M., Casarejos, M. J., Menéndez-Cuervo, J., Rodriguez-Navarro, J. A., García de Yébenes, J., & Mena, M. A. (2008). Glial dysfunction in parkin null mice: effects of aging. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(3), 598–611.
116. Frank-Cannon, T. C., Tran, T., Ruhn, K. A., Martinez, T. N., Hong, J., Marvin, M., Hartley, M., Treviño, I., O'Brien, D. E., Casey, B., Goldberg, M. S., & Tansey, M. G. (2008). Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(43), 10825–10834.
117. Daher, J. P., Volpicelli-Daley, L. A., Blackburn, J. P., Moehle, M. S., & West, A. B. (2014). Abrogation of α-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9289–9294.
118. Kim, J., Byun, J. W., Choi, I., Kim, B., Jeong, H. K., Jou, I., & Joe, E. (2013). PINK1 Deficiency Enhances Inflammatory Cytokine Release from Acutely Prepared Brain Slices. Experimental neurobiology, 22(1), 38–44.
119. Qu, J., Liu, N., Gao, L., Hu, J., Sun, M., & Yu, D. (2023). Development of CRISPR Cas9, spin-off technologies and their application in model construction and potential therapeutic methods of Parkinson's disease. Frontiers in neuroscience, 17, 1223747.
120. Liu, Y., Holdbrooks, A. T., De Sarno, P., Rowse, A. L., Yanagisawa, L. L., McFarland, B. C., Harrington, L. E., Raman, C., Sabbaj, S., Benveniste, E. N., & Qin, H. (2014). Therapeutic efficacy of suppressing the Jak/STAT pathway in multiple models of experimental autoimmune encephalomyelitis. Journal of immunology (Baltimore, Md. : 1950), 192(1), 59–72.
121. McCoy, M. K., Ruhn, K. A., Martinez, T. N., McAlpine, F. E., Blesch, A., & Tansey, M. G. (2008). Intranigral lentiviral delivery of dominant-negative TNF attenuates neurodegeneration and behavioral deficits in hemiparkinsonian rats. Molecular therapy : the journal of the American Society of Gene Therapy, 16(9), 1572–1579.
122. Harms, A. S., Barnum, C. J., Ruhn, K. A., Varghese, S., Treviño, I., Blesch, A., & Tansey, M. G. (2011). Delayed dominant-negative TNF gene therapy halts progressive loss of nigral dopaminergic neurons in a rat model of Parkinson's disease. Molecular therapy : the journal of the American Society of Gene Therapy, 19(1), 46–52.
123. Pisanu, A., Lecca, D., Mulas, G., Wardas, J., Simbula, G., Spiga, S., & Carta, A. R. (2014). Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiology of disease, 71, 280–291.
124. Subramaniam, S. R., & Federoff, H. J. (2017). Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson's Disease. Frontiers in aging neuroscience, 9, 176.
125. Joniec-Maciejak, I., Ciesielska, A., Wawer, A., Sznejder-Pachołek, A., Schwenkgrub, J., Cudna, A., Hadaczek, P., Bankiewicz, K. S., Członkowska, A., & Członkowski, A. (2014). The influence of AAV2-mediated gene transfer of human IL-10 on neurodegeneration and immune response in a murine model of Parkinson's disease. Pharmacological reports : PR, 66(4), 660–669.
126. Schwenkgrub, J., Joniec-Maciejak, I., Sznejder-Pachołek, A., Wawer, A., Ciesielska, A., Bankiewicz, K., Członkowska, A., & Członkowski, A. (2013). Effect of human interleukin-10 on the expression of nitric oxide synthases in the MPTP-based model of Parkinson's disease. Pharmacological reports : PR, 65(1), 44–49.
127. García, M. C., Cinquina, V., Palomo-Garo, C., Rábano, A., & Fernández-Ruiz, J. (2015). Identification of CB₂ receptors in human nigral neurons that degenerate in Parkinson's disease. Neuroscience letters, 587, 1–4.
128. Fernández-Suárez, D., Celorrio, M., Riezu-Boj, J. I., Ugarte, A., Pacheco, R., González, H., Oyarzabal, J., Hillard, C. J., Franco, R., & Aymerich, M. S. (2014). Monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiology of aging, 35(11), 2603–2616.