1. Słoka, J., M. Madej, and B. Strzalka-Mrozik, Molecular Mechanisms of the Antitumor Effects of Mesalazine and Its Preventive Potential in Colorectal Cancer. Molecules, 2023;28(13): 5081.
2. Elmahdi, R., et al., Shared environment and colorectal cancer: A Nordic pedigree registry‐based cohort study. International Journal of Cancer, 2022;151(8): 1261-1269.
3. Sung, H., et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 2021;71(3): 209-249.
4. Xi, Y. and P. Xu, Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncology, 2021;14(10): 101174.
5. Hossain, M.S., et al., Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers, 2022;14(7): 1732.
6. Patel, S.G., et al., The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. The Lancet Gastroenterology & Hepatology, 2022.
7. Liu, J., et al., Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduction and Targeted Therapy, 2022;7(1): 1-23.
8. Yu, F., et al., Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduction and Targeted Therapy, 2021;6(1): 1-24.
9. Kühl, S.J. and M. Kühl, On the role of Wnt/β-catenin signaling in stem cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013;1830(2): 2297-2306.
10. Gavagan, M., et al., The Wnt pathway scaffold protein Axin promotes signaling specificity by suppressing competing kinase reactions. bioRxiv, 2019: 768242.
11. Qiao, Y., et al., Axis inhibition protein 1 (Axin1) deletion–induced hepatocarcinogenesis requires intact β‐catenin but not notch cascade in mice. Hepatology, 2019;70(6): 2003-2017.
12. Miete, C., et al., Gαi2-induced conductin/axin2 condensates inhibit Wnt/β-catenin signaling and suppress cancer growth. Nature communications, 2022;13(1): 1-16.
13. Salahshor, S. and J. Woodgett, The links between axin and carcinogenesis. Journal of clinical pathology, 2005;58(3): 225-236.
14. Ji, Y., et al., Therapeutic strategies targeting Wnt/β‑catenin signaling for colorectal cancer. International Journal of Molecular Medicine, 2022;49(1): 1-17.
15. Dong, X., et al., Genomic structure, chromosome mapping and expression analysis of the human AXIN2 gene. Cytogenetic and Genome Research, 2001;93(1-2): 26-28.
16. Aghabozorgi, A.S., et al., The genetic factors associated with Wnt signaling pathway in colorectal cancer. Life Sciences, 2020;256: 118006.
17. Otero, L., et al., Variations in AXIN2 predict risk and prognosis of colorectal cancer. BDJ open, 2019;5(1): 1-6.
18. Moradifard, S., Z. Minuchehr, and S.M. Ganji, An investigation on the c‐MYC, AXIN1, and COL11A1 gene expression in colorectal cancer. Biotechnology and Applied Biochemistry, 2022;69(4): 1576-1586.
19. Aghabozorgi, A.S., et al., Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives. Biochimie, 2019;157: 64-71.
20. Mazzoni, S.M., et al., An AXIN2 mutant allele associated with predisposition to colorectal neoplasia has context-dependent effects on AXIN2 protein function. Neoplasia, 2015;17(5): 463-472.
21. Rivera, B., et al., A novel AXIN2 germline variant associated with attenuated FAP without signs of oligondontia or ectodermal dysplasia. European Journal of Human Genetics, 2014;22(3): 423-426.
22. Wodarz, A. and R. Nusse, Mechanisms of Wnt signaling in development. Annual review of cell and developmental biology, 1998;14(1): 59-88.
23. Voronkov, A. and S. Krauss, Wnt/beta-catenin signaling and small molecule inhibitors. Current pharmaceutical design, 2013;19(4): 634-664.
24. Adzhubei, I.A., et al., A method and server for predicting damaging missense mutations. Nat Methods, 2010;7(4): 248-9.
25. Pettersen, E.F., et al., UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, 2004;25(13): 1605-12.
26. Guex, N. and M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997;18(15): 2714-23.
27. Vincze, T., J. Posfai, and R.J. Roberts, NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic acids research, 2003;31(13): 3688-3691.
28. Rychlik, W., OLIGO 7 primer analysis software. Methods Mol Biol, 2007;402: 35-60.
29. Nong, J., et al., Phase separation of Axin organizes the β-catenin destruction complex. J Cell Biol, 2021;220(4).
30. Mallick, A., et al., Axin Family of scaffolding proteins in development: Lessons from C. elegans. Journal of developmental biology, 2019;7(4): 20.
31. Jin, L.H., et al., Detection of point mutations of the Axin1 gene in colorectal cancers. International journal of cancer, 2003;107(5): 696-699.
32. Khan, N.P., et al., Novelty of Axin 2 and lack of Axin 1 gene mutation in colorectal cancer: a study in Kashmiri population. Molecular and cellular biochemistry, 2011;355(1): 149-155.
33. Webster, M.T., et al., Sequence variants of the axin gene in breast, colon, and other cancers: an analysis of mutations that interfere with GSK3 binding. Genes, Chromosomes and Cancer, 2000;28(4): 443-453.
34. Sidore, C., et al., Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nature genetics, 2015;47(11): 1272-1281.
35. Peterlongo, P., et al., Germline mutations of AXIN2 are not associated with nonsyndromic colorectal cancer. Human mutation, 2005;25(5): 498.
36. Dajani, R., et al., Structural basis for recruitment of glycogen synthase kinase 3β to the axin—APC scaffold complex. The EMBO journal, 2003;22(3): 494-501.