ZNF521 Overexpression in U87MG Cells Induces Neural Progenitors and Improves Motor Function in Spinal Cord Injury in Rats

Document Type : Original Research

Authors
1 Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
2 1. Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran2. Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
3 Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
4 Department of Psychology, Western Carolina University (WCU), Cullowhee, NC, USA
5 Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Abstract
Introduction: This experimental in-vitro and in-vivo parallel-group study aimed to investigate the ZNF521 overexpression effects on the glioblastoma cell line (U87MG) behavior in vitro and the therapeutic potential of U87MG cells that were overexpressed by ZNF521 (U87-ZNF521) in functional recovery of spinal cord injury (SCI) in rats.

Methods: ZNF521-IRES-GFP was introduced into U87MG cells and maintained in the neural inductive medium for over 3 weeks. The GFAP, ITGA6, PAX6, NES, SOX1, TUBB3, and OLIG2 gene expressions were analyzed. The SCI rats were split into three groups, with 10 rats each (30 rats in total). Then, U87-ZNF521 cells were transplanted, and the Basso-Beattie-Bresnahan scale and footprint analysis were used to evaluate the rats’ locomotor capacity.

Results: ZNF521 overexpression induced morphological changes and aggregated formation in U87MG cells, with a 26% transfection rate. Significant upregulation of PAX6, TUBB3, and OLIG2 and decreasing SOX1 were observed, while GFAP, ITGA6, and NES showed non-significant changes compared to the control group. In SCI rats, U87-ZNF521 exhibited substantial recovery in hindlimb motor coordination and weight support. Moreover, gait analysis revealed increased step length, stride angle, and step width in U87-ZNF521 rats during a five-week treatment. However, no significant improvement was observed with plantar application.

Conclusion: ZNF521 overexpression in the U87MG suggests its potential to differentiate into neural progenitors. Additionally, these neural progenitors improved motor function in SCI rats. ZNF521 can be a potential therapy for promoting recovery in glioblastoma and SCIs, highlighting its role as a promising target for further exploration in neural regeneration strategies.

Keywords

Subjects


1. Kamiya D, Banno S, Sasai N, Ohgushi M, Inomata H, Watanabe K, et al. Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature. 2011;470(7335):503-9.
2. Shen S, Pu J, Lang B, McCaig CD. A zinc finger protein Zfp521 directs neural differentiation and beyond. Stem Cell Res Ther. 2011;2(2):20.
3. Zarei-Kheirabadi M, Hesaraki M, Shojaei A, Kiani S, Baharvand H. Generation of neural stem cells from adult astrocytes by using a single reprogramming factor. J Cell Physiol. 2019;234(10):18697-706.
4. Shahbazi E, Moradi S, Nemati S, Satarian L, Basiri M, Gourabi H, et al. Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor. Stem Cell Reports. 2016;6(4):539-51.
5. Scicchitano S, Giordano M, Lucchino V, Montalcini Y, Chiarella E, Aloisio A, et al. The stem cell-associated transcription co-factor, ZNF521, interacts with GLI1 and GLI2 and enhances the activity of the Sonic hedgehog pathway. Cell Death Dis. 2019;10(10):715.
6. Russo R, Russo V, Cecere F, Valletta M, Gentile MT, Colucci-D'Amato L, et al. ZBTB2 protein is a new partner of the Nucleosome Remodeling and Deacetylase (NuRD) complex. Int J Biol Macromol. 2021;168:67-76.
7. Schuster A, Klein E, Neirinckx V, Knudsen AM, Fabian C, Hau AC, et al. AN1-type zinc finger protein 3 (ZFAND3) is a transcriptional regulator that drives Glioblastoma invasion. Nat Commun. 2020;11(1):6366.
8. Spina R, Filocamo G, Iaccino E, Scicchitano S, Lupia M, Chiarella E, et al. Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells. Oncotarget. 2013;4(8):1280-92.
9. Zhang L, Zhang W, Li Y, Alvarez A, Li Z, Wang Y, et al. SHP-2-upregulated ZEB1 is important for PDGFRalpha-driven glioma epithelial-mesenchymal transition and invasion in mice and humans. Oncogene. 2016;35(43):5641-52.
10. Zhang J, Luo J, Jiang H, Xie T, Zheng J, Tian Y, et al. The Tumor Suppressor Role of Zinc Finger Protein 671 (ZNF671) in Multiple Tumors Based on Cancer Single-Cell Sequencing. Front Oncol. 2019;9:1214.
11. Moinuddin FM, Alvi MA, Kerezoudis P, Wahood W, Meyer J, Lachance DH, et al. Variation in management of spinal gliobastoma multiforme: results from a national cancer registry. J Neurooncol. 2019;141(2):441-7.
12. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell. 2009;4(6):568-80.
13. Kawamura Y, Takouda J, Yoshimoto K, Nakashima K. New aspects of glioblastoma multiforme revealed by similarities between neural and glioblastoma stem cells. Cell Biol Toxicol. 2018;34(6):425-40.
14. Bakhshinyan D, Savage N, Salim SK, Venugopal C, Singh SK. The Strange Case of Jekyll and Hyde: Parallels Between Neural Stem Cells and Glioblastoma-Initiating Cells. Front Oncol. 2020;10:603738.
15. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell. 2019;178(4):835-49 e21.
16. Bodey B, Kaiser HE, Siegel SE. Epidermal growth factor receptor (EGFR) expression in childhood brain tumors. In Vivo. 2005;19(5):931-41.
17. Ponten J, Macintyre EH. Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand. 1968;74(4):465-86.
18. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64(19):7011-21.
19. Clark MJ, Homer N, O'Connor BD, Chen Z, Eskin A, Lee H, et al. U87MG decoded: the genomic sequence of a cytogenetically aberrant human cancer cell line. PLoS Genet. 2010;6(1):e1000832.
20. Liu H, Xia J, Wang T, Li W, Song Y, Tan G. Differentiation of human glioblastoma U87 cells into cholinergic neuron. Neurosci Lett. 2019;704:1-7.
21. Zhang S, Shen J, Li D, Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics. 2021;11(2):614-48.
22. Pruteanu LL, Kopanitsa L, Modos D, Kletnieks E, Samarova E, Bender A, et al. Transcriptomics predicts compound synergy in drug and natural product treated glioblastoma cells. PLoS One. 2020;15(9):e0239551.
23. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410.
24. Zarei-Kheirabadi M, Hesaraki M, Kiani S, Baharvand H. In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor. Stem Cell Res Ther. 2019;10(1):380.
25. Butruille L, Batailler M, Vaudin P, Pillon D, Migaud M. GFAP-expressing cells in the adult hypothalamus can generate multiple neural cell lineages in vitro. Neurosci Lett. 2024;824:137674.
26. Radu R, Petrescu GED, Gorgan RM, Brehar FM. GFAPdelta: A Promising Biomarker and Therapeutic Target in Glioblastoma. Front Oncol. 2022;12:859247.
27. Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J, et al. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell. 2010;6(5):421-32.
28. Wang Q, Wu H, Hu J, Fu H, Qu Y, Yang Y, et al. Nestin Is Required for Spindle Assembly and Cell-Cycle Progression in Glioblastoma Cells. Mol Cancer Res. 2021;19(10):1651-65.
29. Garcia I, Aldaregia J, Marjanovic Vicentic J, Aldaz P, Moreno-Cugnon L, Torres-Bayona S, et al. Oncogenic activity of SOX1 in glioblastoma. Sci Rep. 2017;7:46575.
30. Zhou YH, Wu X, Tan F, Shi YX, Glass T, Liu TJ, et al. PAX6 suppresses growth of human glioblastoma cells. J Neurooncol. 2005;71(3):223-9.
31. Latremoliere A, Cheng L, DeLisle M, Wu C, Chew S, Hutchinson EB, et al. Neuronal-Specific TUBB3 Is Not Required for Normal Neuronal Function but Is Essential for Timely Axon Regeneration. Cell Rep. 2018;24(7):1865-79 e9.
32. Sagner A, Gaber ZB, Delile J, Kong JH, Rousso DL, Pearson CA, et al. Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics. PLoS Biol. 2018;16(2):e2003127.
33. Alizadeh SD, Jalalifar MR, Ghodsi Z, Sadeghi-Naini M, Malekzadeh H, Rahimi G, et al. Reprogramming of astrocytes to neuronal-like cells in spinal cord injury: a systematic review. Spinal Cord. 2024;62(4):133-42.
34. Liu X, Li C, Li J, Xie L, Hong Z, Zheng K, et al. EGF signaling promotes the lineage conversion of astrocytes into oligodendrocytes. Mol Med. 2022;28(1):50.
35. Zhang H, Wang R, Yu Y, Liu J, Luo T, Fan F. Glioblastoma Treatment Modalities besides Surgery. J Cancer. 2019;10(20):4793-806.
36. Lee C, Robinson M, Willerth SM. Direct Reprogramming of Glioblastoma Cells into Neurons Using Small Molecules. ACS Chem Neurosci. 2018;9(12):3175-85.
37. Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakefield XO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol. 2018;14(8):482-95.
38. Okawa S, Gagrica S, Blin C, Ender C, Pollard SM, Krijgsveld J. Proteome and Secretome Characterization of Glioblastoma-Derived Neural Stem Cells. Stem Cells. 2017;35(4):967-80.
39. Wang X, Pei Z, Hossain A, Bai Y, Chen G. Transcription factor-based gene therapy to treat glioblastoma through direct neuronal conversion. Cancer Biol Med. 2021;18(3):860-74.
40. Cheng X, Tan Z, Huang X, Yuan Y, Qin S, Gu Y, et al. Inhibition of Glioma Development by ASCL1-Mediated Direct Neuronal Reprogramming. Cells. 2019;8(6).
41. Yang N, Wang L, Chen T, Liu R, Liu Z, Zhang L. ZNF521 which is downregulated by miR-802 suppresses malignant progression of Hepatocellular Carcinoma through regulating Runx2 expression. J Cancer. 2020;11(19):5831-9.
42. Yu M, Al-Dallal S, Al-Haj L, Panjwani S, McCartney AS, Edwards SM, et al. Transcriptional regulation of the proto-oncogene Zfp521 by SPI1 (PU.1) and HOXC13. Genesis. 2016;54(10):519-33.
43. Wei PC, Chao A, Peng HH, Chao AS, Chang YL, Chang SD, et al. SOX9 as a Predictor for Neurogenesis Potentiality of Amniotic Fluid Stem Cells. Stem Cells Transl Med. 2014;3(10):1138-47.