1. Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer’s disease: mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther [Internet]. 2024;9(1):211. Available from: https://doi.org/10.1038/s41392-024-01911-3
2. Long JM, Holtzman DM. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell [Internet]. 2019;179(2):312–39. Available from: https://www.sciencedirect.com/science/article/pii/S0092867419310074
3. O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204.
4. Wolfe MS. The role of tau in neurodegenerative diseases and its potential as a therapeutic target. Scientifica (Cairo). 2012;2012:796024.
5. Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther [Internet]. 2023;8(1):359. Available from: https://doi.org/10.1038/s41392-023-01588-0
6. Cai Y, Liu J, Wang B, Sun M, Yang H. Microglia in the Neuroinflammatory Pathogenesis of Alzheimer’s Disease and Related Therapeutic Targets. Front Immunol. 2022;13:856376.
7. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763.
8. D’Alessandro MCB, Kanaan S, Geller M, Praticò D, Daher JPL. Mitochondrial dysfunction in Alzheimer’s disease. Ageing Res Rev [Internet]. 2025;107:102713. Available from: https://www.sciencedirect.com/science/article/pii/S1568163725000595
9. Bettcher BM, Tansey MG, Dorothée G, Heneka MT. Peripheral and central immune system crosstalk in Alzheimer disease - a research prospectus. Nat Rev Neurol. 2021 Nov;17(11):689–701.
10. Chen X, Holtzman DM. Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity. 2022 Dec;55(12):2236–54.
11. Zhang F, Jiang L. Neuroinflammation in Alzheimer’s disease. Neuropsychiatr Dis Treat. 2015;11:243–56.
12. Ramey GD, Tang A, Phongpreecha T, Yang MM, Woldemariam SR, Oskotsky TT, et al. Exposure to autoimmune disorders is associated with increased Alzheimer’s disease risk in a multi-site electronic health record analysis. Cell reports Med. 2025 Mar;6(3):101980.
13. Gulisano W, Maugeri D, Baltrons MA, Fà M, Amato A, Palmeri A, et al. Role of Amyloid-β and Tau Proteins in Alzheimer’s Disease: Confuting the Amyloid Cascade. J Alzheimers Dis. 2018;64(s1):S611–31.
14. Zhao Z, Liu Y, Ruan S, Hu Y. Current Anti-Amyloid-β Therapy for Alzheimer’s Disease Treatment: From Clinical Research to Nanomedicine. Int J Nanomedicine. 2023;18:7825–45.
15. Wisniewski T, Konietzko U. Amyloid-beta immunisation for Alzheimer’s disease. Lancet Neurol. 2008 Sep;7(9):805–11.
16. Salloway SP, Sevingy J, Budur K, Pederson JT, DeMattos RB, Von Rosenstiel P, et al. Advancing combination therapy for Alzheimer’s disease. Alzheimer’s Dement (New York, N Y). 2020;6(1):e12073.
17. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020 Feb;367(6478).
18. Uddin MJ, Mohite P, Munde S, Ade N, Oladosu TA, Chidrawar VR, et al. Extracellular vesicles: The future of therapeutics and drug delivery systems. Intell Pharm [Internet]. 2024;2(3):312–28. Available from: https://www.sciencedirect.com/science/article/pii/S2949866X24000273
19. Chavda VP, Pandya A, Kumar L, Raval N, Vora LK, Pulakkat S, et al. Exosome nanovesicles: A potential carrier for therapeutic delivery. Nano Today [Internet]. 2023;49:101771. Available from: https://www.sciencedirect.com/science/article/pii/S1748013223000208
20. Qin J, Ma Z, Chen X, Shu S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Front Neurol. 2023;14:1103416.
21. Nasb M, Tao W, Chen N. Alzheimer’s Disease Puzzle: Delving into Pathogenesis Hypotheses. Aging Dis. 2024 Feb;15(1):43–73.
22. Miao J, Ma H, Yang Y, Liao Y, Lin C, Zheng J, et al. Microglia in Alzheimer’s disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci. 2023;15:1201982.
23. Lee CYD, Landreth GE. The role of microglia in amyloid clearance from the AD brain. J Neural Transm. 2010 Aug;117(8):949–60.
24. Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther [Internet]. 2023;8(1):267. Available from: https://doi.org/10.1038/s41392-023-01486-5
25. Long HZ, Zhou ZW, Cheng Y, Luo HY, Li FJ, Xu SG, et al. The Role of Microglia in Alzheimer’s Disease From the Perspective of Immune Inflammation and Iron Metabolism. Front Aging Neurosci. 2022;14:888989.
26. Valiukas Z, Tangalakis K, Apostolopoulos V, Feehan J. Microglial activation states and their implications for Alzheimer’s Disease. J Prev Alzheimer’s Dis [Internet]. 2025;12(1):100013. Available from: https://www.sciencedirect.com/science/article/pii/S2274580724006058
27. Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement (New York, N Y). 2018;4:575–90.
28. Dias D, Socodato R. Beyond Amyloid and Tau: The Critical Role of Microglia in Alzheimer’s Disease Therapeutics. Biomedicines [Internet]. 2025;13(2). Available from: https://www.mdpi.com/2227-9059/13/2/279
29. Adamu A, Li S, Gao F, Xue G. The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets. Front Aging Neurosci [Internet]. 2024;Volume 16. Available from: https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2024.1347987
30. Chen T, Dai Y, Hu C, Lin Z, Wang S, Yang J, et al. Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS. 2024 Jul;21(1):60.
31. Chen Z, Balachandran YL, Chong WP, Chan KWY. Roles of Cytokines in Alzheimer’s Disease. Int J Mol Sci [Internet]. 2024;25(11). Available from: https://www.mdpi.com/1422-0067/25/11/5803
32. Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, et al. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed Pharmacother [Internet]. 2024;178:117177. Available from: https://www.sciencedirect.com/science/article/pii/S0753332224010618
33. Domingues C, da Cruz E Silva OAB, Henriques AG. Impact of Cytokines and Chemokines on Alzheimer’s Disease Neuropathological Hallmarks. Curr Alzheimer Res. 2017;14(8):870–82.
34. Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol Psychiatry. 2021 Oct;26(10):5481–503.
35. Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm. 2022 Jun;3(2):e147.
36. Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021 Jul;6(1):263.
37. Sharma C, Kim SR. Linking Oxidative Stress and Proteinopathy in Alzheimer’s Disease. Antioxidants (Basel, Switzerland). 2021 Jul;10(8).
38. Dash UC, Bhol NK, Swain SK, Samal RR, Nayak PK, Raina V, et al. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm Sin B [Internet]. 2025;15(1):15–34. Available from: https://www.sciencedirect.com/science/article/pii/S2211383524004040
39. Ghimire A, Rehman SA, Subhani A, Khan MA, Rahman Z, Iqubal MK, et al. Mechanism of microglia-mediated neuroinflammation, associated cognitive dysfunction, and therapeutic updates in Alzheimer’s disease. hLife [Internet]. 2025;3(2):64–81. Available from: https://www.sciencedirect.com/science/article/pii/S2949928324000968
40. Balkhi S, Di Spirito A, Poggi A, Mortara L. Immune Modulation in Alzheimer’s Disease: From Pathogenesis to Immunotherapy. Cells. 2025 Feb;14(4).
41. Bhadane P, Roul K, Belemkar S, Kumar D. Immunotherapeutic approaches for Alzheimer’s disease: Exploring active and passive vaccine progress. Brain Res [Internet]. 2024;1840:149018. Available from: https://www.sciencedirect.com/science/article/pii/S0006899324002725
42. Song C, Shi J, Zhang P, Zhang Y, Xu J, Zhao L, et al. Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Transl Neurodegener. 2022 Mar;11(1):18.
43. Alshamrani M. Recent Trends in Active and Passive Immunotherapies of Alzheimer’s Disease. Antibodies (Basel, Switzerland). 2023 Jun;12(2).
44. Mavoungou C, Schindowski K. Immunotherapy with Anti-Aβ Monoclonal Antibodies in Alzheimer’s Disease: A Critical Review on the Molecules in the Pipelines with Regulatory Considerations. In: Frontiers in Clinical Drug Research - Alzheimer Disorders. 2013. p. 3–85.
45. Müller L, Di Benedetto S. Neuroimmune crosstalk in chronic neuroinflammation: microglial interactions and immune modulation. Front Cell Neurosci. 2025;19:1575022.
46. Elumalai K, Srinivasan S, Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed Technol [Internet]. 2024;5:109–22. Available from: https://www.sciencedirect.com/science/article/pii/S2949723X23000533
47. Wang M, Thomson AW, Yu F, Hazra R, Junagade A, Hu X. Regulatory T lymphocytes as a therapy for ischemic stroke. Semin Immunopathol. 2023 May;45(3):329–46.
48. Di Bella MA. Overview and Update on Extracellular Vesicles: Considerations on Exosomes and Their Application in Modern Medicine. Biology (Basel). 2022 May;11(6).
49. Krylova S V, Feng D. The Machinery of Exosomes: Biogenesis, Release, and Uptake. Int J Mol Sci. 2023 Jan;24(2).
50. Yang Y, Wang M, Zhang YY, Zhao SZ, Gu S. The endosomal sorting complex required for transport repairs the membrane to delay cell death. Front Oncol. 2022;12:1007446.
51. Ghadami S, Dellinger K. The lipid composition of extracellular vesicles: applications in diagnostics and therapeutic delivery. Front Mol Biosci [Internet]. 2023;Volume 10. Available from: https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2023.1198044
52. Lee YJ, Shin KJ, Chae YC. Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer. Exp Mol Med. 2024 Apr;56(4):877–89.
53. Bağcı C, Sever-Bahcekapili M, Belder N, Bennett APS, Erdener ŞE, Dalkara T. Overview of extracellular vesicle characterization techniques and introduction to combined reflectance and fluorescence confocal microscopy to distinguish extracellular vesicle subpopulations. Neurophotonics. 2022 Apr;9(2):21903.
54. Yakubovich EI, Polischouk AG, Evtushenko VI. Principles and Problems of Exosome Isolation from Biological Fluids. Biochem (Mosc) Suppl Ser A Membr Cell Biol. 2022;16(2):115–26.
55. Jia Y, Yu L, Ma T, Xu W, Qian H, Sun Y, et al. Small extracellular vesicles isolation and separation: Current techniques, pending questions and clinical applications. Theranostics. 2022;12(15):6548–75.
56. Schnatz A, Müller C, Brahmer A, Krämer-Albers EM. Extracellular Vesicles in neural cell interaction and CNS homeostasis. FASEB bioAdvances. 2021 Aug;3(8):577–92.
57. You Y, Ikezu T. Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiol Dis. 2019 Oct;130:104512.
58. Sun M, Chen Z. Unveiling the Complex Role of Exosomes in Alzheimer’s Disease. J Inflamm Res. 2024;17:3921–48.
59. Dehghani S, Ocakcı O, Hatipoglu PT, Özalp VC, Tevlek A. Exosomes as Biomarkers and Therapeutic Agents in Neurodegenerative Diseases: Current Insights and Future Directions. Mol Neurobiol [Internet]. 2025; Available from: https://doi.org/10.1007/s12035-025-04825-5
60. Shen H, Li S, Lin L, Wu Q, Dong Z, Xu W. Advancements in plant-derived exosome-like vesicles: Versatile bioactive carriers for targeted drug delivery systems. J Pharm Anal [Internet]. 2025;101300. Available from: https://www.sciencedirect.com/science/article/pii/S2095177925001170
61. Fu S, Wang Y, Xia X, Zheng JC. Exosome engineering: Current progress in cargo loading and targeted delivery. NanoImpact [Internet]. 2020;20:100261. Available from: https://www.sciencedirect.com/science/article/pii/S2452074820300550
62. Jeong H, Kim OJ, Oh SH, Lee S, Reum Lee HA, Lee KO, et al. Extracellular Vesicles Released from Neprilysin Gene-Modified Human Umbilical Cord-Derived Mesenchymal Stem Cell Enhance Therapeutic Effects in an Alzheimer’s Disease Animal Model. Stem Cells Int. 2021;2021:5548630.
63. Katsuda T, Tsuchiya R, Kosaka N, Yoshioka Y, Takagaki K, Oki K, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep [Internet]. 2013;3(1):1197. Available from: https://doi.org/10.1038/srep01197
64. Liang T, Wu Z, Li J, Wu S, Shi W, Wang L. The emerging double-edged sword role of exosomes in Alzheimer’s disease. Front Aging Neurosci. 2023;15:1209115.
65. Sharma V, Mukhopadhyay C Das. Exosome as drug delivery system: Current advancements. Extracell Vesicle [Internet]. 2024;3:100032. Available from: https://www.sciencedirect.com/science/article/pii/S2773041723000112
66. Hudry E, Martin C, Gandhi S, György B, Scheffer DI, Mu D, et al. Exosome-associated AAV vector as a robust and convenient neuroscience tool. Gene Ther. 2016 Apr;23(4):380–92.
67. Yassaghi Y, Nazerian Y, Ghasemi M, Nazerian A, Sayehmiri F, Perry G, et al. Microglial modulation as a therapeutic strategy in Alzheimer’s disease: Focus on microglial preconditioning approaches. J Cell Mol Med. 2024 Aug;28(15):e18554.
68. Jain N, Ulrich JD. TREM2 and microglia exosomes: a potential highway for pathological tau. Vol. 17, Molecular neurodegeneration. England; 2022. p. 73.
69. Chen L, Xiong Y, Chopp M, Zhang Y. Engineered exosomes enriched with select microRNAs amplify their therapeutic efficacy for traumatic brain injury and stroke. Front Cell Neurosci. 2024;18:1376601.
70. Fu W, Li T, Chen H, Zhu S, Zhou C. Research Progress in Exosome-Based Nanoscale Drug Carriers in Tumor Therapies. Front Oncol. 2022;12:919279.
71. Zhong L, Wang J, Wang P, Liu X, Liu P, Cheng X, et al. Neural stem cell-derived exosomes and regeneration: cell-free therapeutic strategies for traumatic brain injury. Stem Cell Res Ther. 2023 Aug;14(1):198.
72. Soares Martins T, Trindade D, Vaz M, Campelo I, Almeida M, Trigo G, et al. Diagnostic and therapeutic potential of exosomes in Alzheimer’s disease. J Neurochem [Internet]. 2021;156(2):162–81. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/jnc.15112
73. Yuyama K, Sun H, Usuki S, Sakai S, Hanamatsu H, Mioka T, et al. A potential function for neuronal exosomes: Sequestering intracerebral amyloid-β peptide. FEBS Lett. 2014;589.
74. Guo M, Yin Z, Chen F, Lei P. Mesenchymal stem cell-derived exosome: a promising alternative in the therapy of Alzheimer’s disease. Alzheimers Res Ther. 2020 Sep;12(1):109.
75. Long R, Wang S. Exosomes from preconditioned mesenchymal stem cells: Tissue repair and regeneration. Regen Ther [Internet]. 2024;25:355–66. Available from: https://www.sciencedirect.com/science/article/pii/S2352320424000099
76. Yin T, Liu Y, Ji W, Zhuang J, Chen X, Gong B, et al. Engineered mesenchymal stem cell-derived extracellular vesicles: A state-of-the-art multifunctional weapon against Alzheimer’s disease. Theranostics. 2023;13(4):1264–85.
77. Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther [Internet]. 2024;9(1):17. Available from: https://doi.org/10.1038/s41392-023-01704-0
78. Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells. 2020 Aug;12(8):814–40.
79. Liu MW, Li H, Xiong GF, Zhang BR, Zhang QJ, Gao SJ, et al. Mesenchymal stem cell exosomes therapy for the treatment of traumatic brain injury: mechanism, progress, challenges and prospects. J Transl Med. 2025 Apr;23(1):427.
80. Liu S, Fan M, Xu JX, Yang LJ, Qi CC, Xia QR, et al. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology. J Neuroinflammation. 2022 Feb;19(1):35.
81. Khan MI, Jeong E, Khan MZ, Shin J, Kim JD. Stem cells-derived exosomes alleviate neurodegeneration and Alzheimer’s pathogenesis by ameliorating neuroinflamation, and regulating the associated molecular pathways. Sci Rep. 2023;13.
82. Cole SL, Vassar R. The Alzheimer’s disease beta-secretase enzyme, BACE1. Mol Neurodegener. 2007 Nov;2:22.
83. Nigam SM, Xu S, Kritikou JS, Marosi K, Brodin L, Mattson MP. Exercise and BDNF reduce Aβ production by enhancing α-secretase processing of APP. J Neurochem. 2017 Jul;142(2):286–96.
84. Engmann O, Giese KP. Crosstalk between Cdk5 and GSK3beta: Implications for Alzheimer’s Disease. Front Mol Neurosci. 2009;2:2.
85. Daksh R, Mathew M, Bosco A, Sojan C, Tom A, Bojja S, et al. The role of exosomes in diagnosis, pathophysiology, and management of Alzheimer’s Disease. Biochem Biophys Res Commun. 2025;754:151526.
86. Rao S, Madhu LN, Babu RS, Shankar G, Kotian S, Nagarajan A, et al. Extracellular vesicles from hiPSC-derived NSCs protect human neurons against Aβ-42 oligomers induced neurodegeneration, mitochondrial dysfunction and tau phosphorylation. Stem Cell Res Ther. 2025 Apr;16(1):191.
87. Lee M, Ban JJ, Yang S, Im W, Kim M. The exosome of adipose-derived stem cells reduces β-amyloid pathology and apoptosis of neuronal cells derived from the transgenic mouse model of Alzheimer’s disease. Brain Res. 2018 Jul;1691:87–93.
88. Li N, Shu J, Yang X, Wei W, Yan A. Exosomes Derived From M2 Microglia Cells Attenuates Neuronal Impairment and Mitochondrial Dysfunction in Alzheimer’s Disease Through the PINK1/Parkin Pathway. Front Cell Neurosci. 2022;16:874102.
89. Pan J, He R, Huo Q, Shi Y, Zhao L. Brain Microvascular Endothelial Cell Derived Exosomes Potently Ameliorate Cognitive Dysfunction by Enhancing the Clearance of Aβ Through Up-Regulation of P-gp in Mouse Model of AD. Neurochem Res. 2020 Sep;45(9):2161–72.
90. Soares Martins T, Marçalo R, Ferreira M, Vaz M, Silva RM, Martins Rosa I, et al. Exosomal Aβ-Binding Proteins Identified by “In Silico” Analysis Represent Putative Blood-Derived Biomarker Candidates for Alzheimer´s Disease. Int J Mol Sci. 2021 Apr;22(8).
91. Lai R, Li B, Bishnoi R. P-tau217 as a Reliable Blood-Based Marker of Alzheimer’s Disease. Biomedicines. 2024 Aug;12(8).
92. Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. J Physiol. 2023 Nov;601(22):4873–93.
93. Dilsiz N. A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Transl Oncol [Internet]. 2024;50:102121. Available from: https://www.sciencedirect.com/science/article/pii/S1936523324002481
94. Mateescu B, Kowal EJK, van Balkom BWM, Bartel S, Bhattacharyya SN, Buzás EI, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. J Extracell vesicles. 2017;6(1):1286095.
95. Xu M, Feng T, Liu B, Qiu F, Xu Y, Zhao Y, et al. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics. 2021;11(18):8926–44.
96. Wang CK, Tsai TH, Lee CH. Regulation of exosomes as biologic medicines: Regulatory challenges faced in exosome development and manufacturing processes. Clin Transl Sci. 2024 Aug;17(8):e13904.