Disruption of the GPR35 expression accelerates the formation of foam cells in hyperglycemia

Authors
1 Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
2 Cardiovascular Diseases Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
3 Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
Abstract
Introduction: Diabetes is one of the most common metabolic disorders that increase the formation of vascular plaques and foam cells in the vessel wall by increasing inflammation in blood cells and arterial walls. Consequently, understanding the genes involved in this process can greatly help control the progression of vascular diseases. Methods: In this study, to investigate the response of GPCR receptor that may play a role in the process of foam cell formation and inflammation in diabetes, related RNAseq and microarray data were examined. Also, the association of candidate gene expression with the foam cell formation genes and co-regulating miRNAs, was evaluated. Results: The results showed that hyperglycemia led to inflammation and decreased GPR35 gene expression. GPR35 expression is also reduced in the blood of prediabetic and diabetic patients, and this decrease in expression is accompanied by changes in other genes involved in the process of foam cell formation. Also, three miRNAs named hsa-miR-320c, hsa-miR-183 and hsa-let-7e are co-regulators of GPR35 gene expression and CD36, OLR1, ABCG1 and ANGPTL4 genes involved in the foam cell formation. Conclusion: The present results indicate that the GPR35 gene may play a role in the process of inflammation and plaque formation in the arteries and it is possible that a decrease in the expression of the GPR35 gene will accelerate the occurrence of vascular complications of diabetes.

Keywords

Subjects


1. Care D, Suppl SS. Introduction and Methodology: Standards of Care in Diabetes—2024. Diabetes Care. 2024;47(January):S1–4.
2. Rahimi E, Ahmadi A, Boroumand MA, Mohammad Soltani B, Behmanesh M. Association of ANRIL Expression with Coronary Artery Disease in Type 2 Diabetic Patients. Cell journal. 2018 Apr;20(1):41–5.
3. Ahmadi A, Behmanesh M, Boroumand MA, Tavallaei M. Up-regulation of MSH2, XRCC1 and ATM genes in patients with type 2 diabetes and coronary artery disease. Diabetes Research and Clinical Practice [Internet]. 2015;109(3):500–6. Available from: https://www.sciencedirect.com/science/article/pii/S0168822715002958
4. Kitada M, Zhang Z, Mima A, King GL. Molecular mechanisms of diabetic vascular complications. Journal of Diabetes Investigation. 2010;1(3):77–89.
5. Moore KJ, Tabas I. The Cellular Biology of Macrophages in Atherosclerosis. Cell [Internet]. 2011;145(3):341–55. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111065/
6. Libby P, Ridker PM, Hansson GK. Inflammation in Atherosclerosis. From Pathophysiology to Practice. Journal of the American College of Cardiology [Internet]. 2009;54(23):2129–38. Available from: http://dx.doi.org/10.1016/j.jacc.2009.09.009
7. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: A dynamic balance. Nature Reviews Immunology. 2013;13(10):709–21.
8. Gantman A, Fuhrman B, Aviram M, Hayek T. High glucose stimulates macrophage SR-BI expression and induces a switch in its activity from cholesterol efflux to cholesterol influx. Biochemical and Biophysical Research Communications [Internet]. 2010;391(1):523–8. Available from: https://www.sciencedirect.com/science/article/pii/S0006291X09022682
9. Cervantes J, Kanter JE. Monocyte and macrophage foam cells in diabetes-accelerated atherosclerosis. Frontiers in Cardiovascular Medicine [Internet]. 2023;10(June):1–7. Available from: https://doi.org/10.3389/fcvm.2023.1213177
10. Duncan EM, Vita L, Dibnah B, Hudson BD. Metabolite-sensing GPCRs controlling interactions between adipose tissue and inflammation. Frontiers in Endocrinology. 2023;14(July):1–9.
11. Varney MJ, Benovic JL. The Role of G Protein–Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacological Reviews. 2024;76(2):267–99.
12. Yasi EA, Kruyer NS, Peralta-Yahya P. Advances in G protein-coupled receptor high-throughput screening. Current Opinion in Biotechnology [Internet]. 2020;64:210–7. Available from: https://www.sciencedirect.com/science/article/pii/S095816692030077X
13. Lee SJ, Im DS. Gpr55 antagonist cid16020046 protects against atherosclerosis development in mice by inhibiting monocyte adhesion and mac-1 expression. International Journal of Molecular Sciences. 2021;22(23).
14. Xie Z, Bailey A, Kuleshov M V, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene Set Knowledge Discovery with Enrichr. Current protocols. 2021 Mar;1(3):e90.
15. Pathan M, Keerthikumar S, Ang C-S, Gangoda L, Quek CYJ, Williamson NA, et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 2015 Aug;15(15):2597–601.
16. Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD. Bioinformatic tools for microRNA dissection. Nucleic Acids Research. 2016;44(1):24–44.
17. Demchak B, Hull T, Reich M, Liefeld T, Smoot M, Ideker T, et al. Cytoscape: the network visualization tool for GenomeSpace workflows. F1000Research. 2014;3:151.
18. Gandhi GK, Ball KK, Cruz NF, Dienel GA. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro. 2010;2(2):57–73.
19. Srinivasan S, Yeh M, Danziger EC, Hatley ME, Riggan AE, Leitinger N, et al. Glucose regulates monocyte adhesion through endothelial production of interleukin-8. Circulation Research. 2003;92(4):371–7.
20. Lee A. Hesperetin suppresses LPS / high glucose-induced inflammatory responses via TLR / MyD88 / NF- κ B signaling pathways in THP-1 cells. 2021;15(5):591–603.
21. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods [Internet]. 2001;25(4):402–8. Available from: https://www.sciencedirect.com/science/article/pii/S1046202301912629
22. Kichi ZA, Natarelli L, Sadeghian S, Boroumand M, Behmanesh M, Weber C. Orphan GPR26 Counteracts Early Phases of Hyperglycemia-Mediated Monocyte Activation and Is Suppressed in Diabetic Patients. 2022;(Cvd).
23. Ma J, Luo J, Sun Y, Zhao Z. Cytokines associated with immune response in atherosclerosis. American journal of translational research [Internet]. 2022;14(9):6424–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/36247305%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC9556506
24. Park YM. CD36, a scavenger receptor implicated in atherosclerosis. Experimental and Molecular Medicine. 2014;46(6):1–7.
25. Antonov AS, Kolodgie FD, Munn DH, Gerrity RG. Regulation of macrophage foam cell formation by αVβ3 integrin: Potential role in human atherosclerosis. American Journal of Pathology. 2004;165(1):247–58.
26. Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine [Internet]. Vol. 12, EPMA Journal. Springer International Publishing; 2021. 265–305 p. Available from: https://doi.org/10.1007/s13167-021-00248-z
27. Sebastiani G, Ceccarelli E, Castagna MG, Dotta F. G-protein-coupled receptors (GPCRs) in the treatment of diabetes: Current view and future perspectives. Best practice & research Clinical endocrinology & metabolism. 2018 Apr;32(2):201–13.
28. Permutt MA, Bernal-Mizrachi E, Inoue H. Calpain 10: The first positional cloning of a gene for type 2 diabetes? Journal of Clinical Investigation. 2000;106(7):819–21.
29. Rasmussen SK, Urhammer SA, Berglund L, Jensen JN, Hansen L, Echwald SM, et al. Variants within the calpain-10 gene on chromosome 2q37 (NIDDM1) and relationships to type 2 diabetes, insulin resistance, and impaired acute insulin secretion among Scandinavian Caucasians. Diabetes. 2002 Dec;51(12):3561–7.
30. Tursinawati Y, Kartikadewi A, Hakim RF. Association of CAPN10 SNP-19 (rs3842570) polymorphism on fasting plasma glucose, blood pressure and body mass index of Javanese type-2 diabetes patients. IOP Conference Series: Earth and Environmental Science. 2019;292(1).
31. Vander Molen J, Frisse LM, Fullerton SM, Qian Y, Del Bosque-Plata L, Hudson RR, et al. Population genetics of CAPN10 and GPR35: implications for the evolution of type 2 diabetes variants. American journal of human genetics. 2005 Apr;76(4):548–60.
32. MacKenzie AE, Lappin JE, Taylor DL, Nicklin SA, Milligan G. GPR35 as a novel therapeutic target. Frontiers in Endocrinology. 2011;2(NOV):1–10.
33. Wu L, Zhu L. The role of semaphorin family in atherosclerosis. Zhongguo Dongmai Yinghua Zazhi. 2021;29(8):645–51.
34. Gong F-H, Long L, Yang Y-S, Shen D-H, Zhang Y-S, Wang X-S, et al. Attenuated macrophage activation mediated by microRNA‑183 knockdown through targeting NR4A2. Experimental and Therapeutic Medicine. 2021;21(4):1–8.
35. Lu X, Yang B, Yang H, Wang L, Li H, Chen S, et al. MicroRNA-320b Modulates Cholesterol Efflux and Atherosclerosis. Journal of Atherosclerosis and Thrombosis. 2022;29(2):200–20.
36. Kankuri E. Positive feedback loop of miR-320 and CD36 regulates the hyperglycemic memory-induced diabetic diastolic cardiac dysfunction. Molecular Therapy Nucleic Acids [Internet]. 2023;32(June):318–21. Available from: https://doi.org/10.1016/j.omtn.2023.03.019
37. Lightbody RJ, Taylor JMW, Dempsie Y, Graham A. Induction of microRNA hsa-let-7d-5p, and repression of HMGA2, contribute protection against lipid accumulation in macrophage “foam” cells. Biochimica et biophysica acta Molecular and cell biology of lipids. 2021 Nov;1866(11):159005.