1. Care D, Suppl SS. Introduction and Methodology: Standards of Care in Diabetes—2024. Diabetes Care. 2024;47(January):S1–4.
2. Rahimi E, Ahmadi A, Boroumand MA, Mohammad Soltani B, Behmanesh M. Association of ANRIL Expression with Coronary Artery Disease in Type 2 Diabetic Patients. Cell journal. 2018 Apr;20(1):41–5.
3. Ahmadi A, Behmanesh M, Boroumand MA, Tavallaei M. Up-regulation of MSH2, XRCC1 and ATM genes in patients with type 2 diabetes and coronary artery disease. Diabetes Research and Clinical Practice [Internet]. 2015;109(3):500–6. Available from: https://www.sciencedirect.com/science/article/pii/S0168822715002958
4. Kitada M, Zhang Z, Mima A, King GL. Molecular mechanisms of diabetic vascular complications. Journal of Diabetes Investigation. 2010;1(3):77–89.
5. Moore KJ, Tabas I. The Cellular Biology of Macrophages in Atherosclerosis. Cell [Internet]. 2011;145(3):341–55. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111065/
6. Libby P, Ridker PM, Hansson GK. Inflammation in Atherosclerosis. From Pathophysiology to Practice. Journal of the American College of Cardiology [Internet]. 2009;54(23):2129–38. Available from: http://dx.doi.org/10.1016/j.jacc.2009.09.009
7. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: A dynamic balance. Nature Reviews Immunology. 2013;13(10):709–21.
8. Gantman A, Fuhrman B, Aviram M, Hayek T. High glucose stimulates macrophage SR-BI expression and induces a switch in its activity from cholesterol efflux to cholesterol influx. Biochemical and Biophysical Research Communications [Internet]. 2010;391(1):523–8. Available from: https://www.sciencedirect.com/science/article/pii/S0006291X09022682
9. Cervantes J, Kanter JE. Monocyte and macrophage foam cells in diabetes-accelerated atherosclerosis. Frontiers in Cardiovascular Medicine [Internet]. 2023;10(June):1–7. Available from: https://doi.org/10.3389/fcvm.2023.1213177
10. Duncan EM, Vita L, Dibnah B, Hudson BD. Metabolite-sensing GPCRs controlling interactions between adipose tissue and inflammation. Frontiers in Endocrinology. 2023;14(July):1–9.
11. Varney MJ, Benovic JL. The Role of G Protein–Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacological Reviews. 2024;76(2):267–99.
12. Yasi EA, Kruyer NS, Peralta-Yahya P. Advances in G protein-coupled receptor high-throughput screening. Current Opinion in Biotechnology [Internet]. 2020;64:210–7. Available from: https://www.sciencedirect.com/science/article/pii/S095816692030077X
13. Lee SJ, Im DS. Gpr55 antagonist cid16020046 protects against atherosclerosis development in mice by inhibiting monocyte adhesion and mac-1 expression. International Journal of Molecular Sciences. 2021;22(23).
14. Xie Z, Bailey A, Kuleshov M V, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene Set Knowledge Discovery with Enrichr. Current protocols. 2021 Mar;1(3):e90.
15. Pathan M, Keerthikumar S, Ang C-S, Gangoda L, Quek CYJ, Williamson NA, et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 2015 Aug;15(15):2597–601.
16. Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD. Bioinformatic tools for microRNA dissection. Nucleic Acids Research. 2016;44(1):24–44.
17. Demchak B, Hull T, Reich M, Liefeld T, Smoot M, Ideker T, et al. Cytoscape: the network visualization tool for GenomeSpace workflows. F1000Research. 2014;3:151.
18. Gandhi GK, Ball KK, Cruz NF, Dienel GA. Hyperglycaemia and diabetes impair gap junctional communication among astrocytes. ASN Neuro. 2010;2(2):57–73.
19. Srinivasan S, Yeh M, Danziger EC, Hatley ME, Riggan AE, Leitinger N, et al. Glucose regulates monocyte adhesion through endothelial production of interleukin-8. Circulation Research. 2003;92(4):371–7.
20. Lee A. Hesperetin suppresses LPS / high glucose-induced inflammatory responses via TLR / MyD88 / NF- κ B signaling pathways in THP-1 cells. 2021;15(5):591–603.
21. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods [Internet]. 2001;25(4):402–8. Available from: https://www.sciencedirect.com/science/article/pii/S1046202301912629
22. Kichi ZA, Natarelli L, Sadeghian S, Boroumand M, Behmanesh M, Weber C. Orphan GPR26 Counteracts Early Phases of Hyperglycemia-Mediated Monocyte Activation and Is Suppressed in Diabetic Patients. 2022;(Cvd).
23. Ma J, Luo J, Sun Y, Zhao Z. Cytokines associated with immune response in atherosclerosis. American journal of translational research [Internet]. 2022;14(9):6424–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/36247305%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC9556506
24. Park YM. CD36, a scavenger receptor implicated in atherosclerosis. Experimental and Molecular Medicine. 2014;46(6):1–7.
25. Antonov AS, Kolodgie FD, Munn DH, Gerrity RG. Regulation of macrophage foam cell formation by αVβ3 integrin: Potential role in human atherosclerosis. American Journal of Pathology. 2004;165(1):247–58.
26. Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine [Internet]. Vol. 12, EPMA Journal. Springer International Publishing; 2021. 265–305 p. Available from: https://doi.org/10.1007/s13167-021-00248-z
27. Sebastiani G, Ceccarelli E, Castagna MG, Dotta F. G-protein-coupled receptors (GPCRs) in the treatment of diabetes: Current view and future perspectives. Best practice & research Clinical endocrinology & metabolism. 2018 Apr;32(2):201–13.
28. Permutt MA, Bernal-Mizrachi E, Inoue H. Calpain 10: The first positional cloning of a gene for type 2 diabetes? Journal of Clinical Investigation. 2000;106(7):819–21.
29. Rasmussen SK, Urhammer SA, Berglund L, Jensen JN, Hansen L, Echwald SM, et al. Variants within the calpain-10 gene on chromosome 2q37 (NIDDM1) and relationships to type 2 diabetes, insulin resistance, and impaired acute insulin secretion among Scandinavian Caucasians. Diabetes. 2002 Dec;51(12):3561–7.
30. Tursinawati Y, Kartikadewi A, Hakim RF. Association of CAPN10 SNP-19 (rs3842570) polymorphism on fasting plasma glucose, blood pressure and body mass index of Javanese type-2 diabetes patients. IOP Conference Series: Earth and Environmental Science. 2019;292(1).
31. Vander Molen J, Frisse LM, Fullerton SM, Qian Y, Del Bosque-Plata L, Hudson RR, et al. Population genetics of CAPN10 and GPR35: implications for the evolution of type 2 diabetes variants. American journal of human genetics. 2005 Apr;76(4):548–60.
32. MacKenzie AE, Lappin JE, Taylor DL, Nicklin SA, Milligan G. GPR35 as a novel therapeutic target. Frontiers in Endocrinology. 2011;2(NOV):1–10.
33. Wu L, Zhu L. The role of semaphorin family in atherosclerosis. Zhongguo Dongmai Yinghua Zazhi. 2021;29(8):645–51.
34. Gong F-H, Long L, Yang Y-S, Shen D-H, Zhang Y-S, Wang X-S, et al. Attenuated macrophage activation mediated by microRNA‑183 knockdown through targeting NR4A2. Experimental and Therapeutic Medicine. 2021;21(4):1–8.
35. Lu X, Yang B, Yang H, Wang L, Li H, Chen S, et al. MicroRNA-320b Modulates Cholesterol Efflux and Atherosclerosis. Journal of Atherosclerosis and Thrombosis. 2022;29(2):200–20.
36. Kankuri E. Positive feedback loop of miR-320 and CD36 regulates the hyperglycemic memory-induced diabetic diastolic cardiac dysfunction. Molecular Therapy Nucleic Acids [Internet]. 2023;32(June):318–21. Available from: https://doi.org/10.1016/j.omtn.2023.03.019
37. Lightbody RJ, Taylor JMW, Dempsie Y, Graham A. Induction of microRNA hsa-let-7d-5p, and repression of HMGA2, contribute protection against lipid accumulation in macrophage “foam” cells. Biochimica et biophysica acta Molecular and cell biology of lipids. 2021 Nov;1866(11):159005.