Volume 22, Issue 1 (2018)                   mjms 2018, 22(1): 41-50 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salem M, Mirzapour T, Bayrami A, Ghaem Maghami R. Comparison of Differentiation and Proliferation Potential of Umbilical Cord and Bone Marrow Mesenchymal Stem Cells for Production of Germ-Like Cells. mjms. 2018; 22 (1) :41-50
URL: http://mjms.modares.ac.ir/article-30-15999-en.html
1- Biology Department, Sciences Faculty, University of Mohaghegh Ardabili, Ardabil, Iran
2- Biology Department, Sciences Faculty, University of Guilan, Rasht, Iran , dr.tooba72@gmail.com
Abstract:   (6766 Views)
Introduction: Due to increase of infertile couples, potential differentiation and proliferation of umbilical cord mesenchymal stem cells (MSCs) and bone marrow stem cells (BM-MSCs) was compared to find proper stem cells for differentiation into germ-like cells.
Materials & Methods: In this experimental study, isolated umbilical cord and bone marrow mesenchymal stem cells were treated by Retinoic acid (10-6M) and Sertoli cells condition medium. Viability percentage and the rate of proliferation (population doubling time) of cells was calculated in both groups. The number of colonies was evaluated in different days of culture, and finally the expression of and meiotic genes investigated by RT-PCR.
Findings: The viability percentage was higher in BM-MSCs group and the rate of proliferation of cells increased by elevating the passage number. The number of colonies in the bone marrow stem cells was significantly higher than that of the umbilical cord MSCs (p<0.05). In contrast, the expression of PLZF, OCT4 and SCP3 genes were detected in umbilical cord MSCs after 10 days of culture. However, in BM-MSC, the expression of PLZF and SCP3 genes was observed only after 15 days of culture.
Conclusion: It seems that the human umbilical MSCs higher differentiation potential for producing germ-like cells when compared to the Bone marrow stem cells. In contrast, the proliferation potential of BM-MSCs is greater than umbilical cord MSCs. This difference is probably due to secreted growth factors from these cells.
Full-Text [PDF 675 kb]   (1401 Downloads)    
Article Type: Original Manuscipt | Subject: Biochemistry
Received: 2018/02/3 | Accepted: 2018/03/5

1. Yang Y, Feng Y, Feng X, Liao Sh, Wang X, Gan H, et al. BMP4 cooperates with retinoic acid to induce the expression of differentiation markers in cultured mouse spermatogonia. Stem Cells Int. 2016;2016:9536192. [Link]
2. Juma AR, Grommen SVH, O'Bryan MK, O'Connor AE, Merriner DJ, Hall NE, et al. PLAG1 deficiency impairs spermatogenesis and sperm motility in mice. Sci Rep. 2017;7(1):5317. [Link] [DOI:10.1038/s41598-017-05676-4]
3. Hua J, Pan S, Yang C, Dong W, Dou Z, Sidhu KS. Derivation of male germ cell-like lineage from human fetal bone marrow stem cells. Reprod Biomed Online. 2009;19(1):99-105. [Link] [DOI:10.1016/S1472-6483(10)60052-1]
4. Asgari HR, Akbari M, Yazdekhasti H, Rajabi Z, Navid S, Aliakbari F, et al. Comparison of human amniotic, chorionic, and umbilical cord multipotent mesenchymal stem cells regarding their capacity for differentiation toward female germ cells. Cell Reprogr. 2017;19(1):44-53. [Link] [DOI:10.1089/cell.2016.0035]
5. Xie L, Lin L, Tang Q, Li W, Huang T, Huo X, et al. Sertoli cell-mediated differentiation of male germ cell-like cells from human umbilical cord Wharton's jelly-derived mesenchymal stem cells in an in vitro co-culture system. Eur J Med Res. 2015;20(1):9. [Link] [DOI:10.1186/s40001-014-0080-6]
6. Fazili A, Gholami S, Zangi BM, Seyedjafari E, Gholami M. In vivo differentiation of mesenchymal stem cells into insulin producing cells on electrospun Poly-L-Lactide acid scaffolds coated with Matricaria chamomilla L. Oil. Cell J. 2016;18(3):310-21. [Link]
7. Fang J, Wei Y, Lv Ch, Peng Sh, Zhao Sh, Hua J. CD61 promotes the differentiation of canine ADMSCs into PGC-like cells through modulation of TGF-β signaling. Sci Rep. 2017;7:43851. [Link] [DOI:10.1038/srep43851]
8. Cheng T, Zhai K, Chang Y, Yao G, He J, Wang F, et al. CHIR99021 combined with retinoic acid promotes the differentiation of primordial germ cells from human embryonic stem cells. Oncotarget. 2017;8(5):7814-26. [Link] [DOI:10.18632/oncotarget.13958]
9. Ghasemzadeh-Hasankolaei M, Baghaban Eslaminejad M, Sedighi-Gilani M. Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis. In Vitro Cell Dev Biol Anim. 2016;52(1):49-61. [Link] [DOI:10.1007/s11626-015-9945-4]
10. Ezquer FE, Ezquer ME, Vicencio JM, Calligaris SD. Two complementary strategies to improve cell engraftment in mesenchymal stem cell-based therapy: Increasing transplanted cell resistance and increasing tissue receptivity. Cell Adh Migr. 2017;11(1):110-9. [Link] [DOI:10.1080/19336918.2016.1197480]
11. Shang F, Liu Sh, Ming L, Tian R, Jin F, Ding Y, et al. Human umbilical cord MSCs as new cell sources for promoting periodontal regeneration in inflammatory periodontal defect. Theranostics. 2017;7(18):4370-82. [Link] [DOI:10.7150/thno.19888]
12. Kermani Sh, Karbalaei K, Madani H, Jahangirnezhad AA, Nasresfahani MH, Baharvand H. Bone marrow-mesenchymal stem cells as a suitable model for assessment of environmental pollution. J Arak Univ Med Sci. 2008;11(3):117-25. [Persian] [Link]
13. Sobolewski K, Małkowski A, Bańkowski E, Jaworski S. Wharton's jelly as a reservoir of peptide growth factors. Placenta. 2005;26(10):747-52. [Link] [DOI:10.1016/j.placenta.2004.10.008]
14. Gomillion CT, Burg KJL. Stem cells and adipose tissue engineering. Biomaterials. 2006;27(36):6052-63. [Link] [DOI:10.1016/j.biomaterials.2006.07.033]
15. Kadam P, Van Saen D, Goossens E. Can mesenchymal stem cells improve spermatogonial stem cell transplantation efficiency?. Andrology. 2017;5(1):2-9. [Link] [DOI:10.1111/andr.12304]
16. Weinbauer GF, Luetjens CM, Simoni M, Nieschlag E. Physiology of testicular function. In: Nieschlag E, Behre HM, Nieschlag S, editors. Andrology: Male reproductive health and dysfunction. 3rd Edition. Berlin: Springer; 2010. pp. 11-59. [Link] [DOI:10.1007/978-3-540-78355-8_2]
17. Hajian Monfared M, Minaee B, Rastegar T, Khrazinejad E, Barbarestani M. Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells. Iran J Basic Med Sci. 2016;19(11):1186-92. [Link]
18. Lakpour MR, Aghajanpour S, Koruji M, Shahverdi A, Sadighi-Gilani MA, Sabbaghian M, et al. Isolation, culture and characterization of human sertoli cells by flow cytometry: Development of procedure. J Reprod Infertil. 2017;18(2):213-7. [Link]
19. Lohr HR, Kuntchithapautham K, Sharma AK, Rohrer B. Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death. Exp Eye Res. 2006;83(2):380-9. [Link] [DOI:10.1016/j.exer.2006.01.014]
20. Zanotto-Filho A, Cammarota M, Gelain DP, Oliveira RB, Delgado-Ca-edo A, Dalmolin RJ, et al. Retinoic acid induces apoptosis by a non-classical mechanism of ERK1/2 activation. Toxicol In Vitro. 2008;22(5):1205-12. [Link] [DOI:10.1016/j.tiv.2008.04.001]
21. Duester G. Retinoic acid synthesis and signaling during early organogenesis. Cell. 2008;134(6):921-31. [Link] [DOI:10.1016/j.cell.2008.09.002]
22. Li H, Kim KH. Retinoic acid inhibits rat XY gonad development by blocking mesonephric cell migration and decreasing the number of gonocytes. Biol Reprod. 2004;70(3):687-93. [Link] [DOI:10.1095/biolreprod.103.023135]
23. Baleato RM, John Aitken R, Roman SD. Vitamin A regulation of BMP4 expression in the male germ line. Dev Biol. 2005;286(1):78-90. [Link] [DOI:10.1016/j.ydbio.2005.07.009]
24. Griswold MD, Hogarth CA, Bowles J, Koopman P. Initiating meiosis: The case for retinoic acid. Biol Reprod. 2012;86(2):35. [Link] [DOI:10.1095/biolreprod.111.096610]
25. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, et al. Derivation of male germ cells from bone marrow stem cells. Lab Invest. 2006;86(7):654-63. [Link] [DOI:10.1038/labinvest.3700429]
26. Izadyar F, Den Ouden K, Creemers LB, Posthuma G, Parvinen M, De Rooij DG. Proliferation and differentiation of bovine type A spermatogonia during long-term culture. Biol Reprod. 2003;68(1):272-81. [Link] [DOI:10.1095/biolreprod.102.004986]
27. Monsefi M, Fereydouni B, Rohani L, Talaei T. Mesenchymal stem cells repair germinal cells of seminiferous tubules of sterile rats. Iran J Reprod Med. 2013;11(7):537-44. [Link]
28. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature. 2004;427(6970):148-54. [Link] [DOI:10.1038/nature02247]
29. Tholpady SS, Katz AJ, Ogle RC. Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. Anat Rec A Discov Mol Cell Evol Biol. 2003;272(1):398-402. [Link] [DOI:10.1002/ar.a.10039]
30. Hosseinzadeh Anvar L, Hosseini Asl S, Sagha M. Relationship between the telomerase activity and the growth kinetics of the human umbilical cord derived mesenchymal stem cells. Tehran Univ Med J. 2016;74(5):321-9. [Persian] [Link]
31. Baghaban Eslaminejad MR, Nazarian H, Taghiyar L. Mesenchymal stem cells with high growth rate in the supernatant medium from rat bone marrow primary culture. J Babol Univ Med Sci. 2008;10(2):12-22. [Persian] [Link]
32. Cakici C, Buyrukcu B, Duruksu G, Haliloglu AH, Aksoy A, Isık A, et al. Recovery of fertility in azoospermia rats after injection of adipose-tissue-derived mesenchymal stem cells: The sperm generation. BioMed Res Int. 2013;2013:529589. [Link] [DOI:10.1155/2013/529589]
33. Salem M, Mirzapour T, Bayrami A, Sagha M, Asadi A. The effects of sertoli cells condition medium and retinoic acid on the number of colonies of bone marrow mesenchymal stem cells. Ardabil Univ Med Sci. 2017;17(1):7-21. [Persian] [Link]
34. Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, Drusenheimer N, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell. 2006;11(1):125-32. [Link] [DOI:10.1016/j.devcel.2006.05.010]
35. Lue Y, Erkkila K, Liu PY, Ma K, Wang Ch, Hikim AS, et al. Fate of bone marrow stem cells transplanted into the testis: Potential implication for men with testicular failure. Am J Pathol. 2007;170(3):899-908. [Link] [DOI:10.2353/ajpath.2007.060543]
36. Huang P, Lin LM, Wu XY, Tang QL, Feng XY, Lin GY, et al. Differentiation of human umbilical cord Wharton's jelly‐derived mesenchymal stem cells into germ‐like cells in vitro. J Cell Biochem. 2010;109(4):747-54. [Link]
37. Lassalle B, Mouthon MA, Riou L, Barroca V, Coureuil M, Boussin F, et al. Bone marrow‐derived stem cells do not reconstitute spermatogenesis in vivo. Stem Cells. 2008;26(5):1385-6. [Link] [DOI:10.1634/stemcells.2007-0767]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.