Volume 22, Issue 2 (2019)                   mjms 2019, 22(2): 63-68 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fozoungari F, Dalimi A, Arab S, Behmanesh M. Role of Mutation in Sb (V)-As (V) Reductase Enzyme of Leishmania tropica Isolates Resistant to Glucantim in Iran. mjms. 2019; 22 (2) :63-68
URL: http://mjms.modares.ac.ir/article-30-25984-en.html
1- Parasitology Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Biophysics Department, Biology Sciences Faculty, Tarbiat Modares University, Tehran, Iran
3- Genetic Department, Biology Sciences Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (5636 Views)

Aims: Glucantime has been considered as a drug of choice for treating cutaneous leishmaniasis for many years. In the recent years, resistance to Glucantime has been increasingly reported in some regions of Iran. In the Leishmania, Arsenate/Antimony reductase acts on the basis of thiol metabolism; it can donate the electron from reduced glutaredoxin to pentavalent (sbV) antimony and arsenate and reduce them to trivalent (sbIII) antimony and arsenite, based on its enzymatic property. It has been assumed that a functional mutation in the enzyme can result in drug resistance. In the present study, the role of Sb (V)-As (V) reductase of Leishmania tropica in drug resistant to glucantime was investigated.
Materials and Methods: In the present experimental research, 15 glucantime sensitive samples and 15 glucantime resistant specimens were collected from different regions of Iran through patients with cutaneous leishmaniasis. For mutation detection, first degenerate primers were designed; then, sequencing and simulation techniques were used based on molecular dynamics method.
Findings: In Leishmania tropica-resistant isolates, only one mutation was seen as replacing alanine (Ala) at position 80 instead of valine (Val). The analysis of the radius of gyration did not reveal any increase in the radius of gyration while simulation.
Conclusion: Mutations in glucantime-resistant isolates did not significantly change simulated active site of antimony ion.
 

Full-Text [PDF 942 kb]   (1211 Downloads)    
Article Type: Original Research | Subject: Parasitology
Received: 2018/10/10 | Accepted: 2019/02/4

References
1. Nadim A, Javadian E, Mohebali M, Momeni AZ. Leishmania parasites and Leishmaniases. Tehran: Tehran University Press; 2009. p. 288. [Persian] [Link]
2. Croft SL. Monitoring drug resistance in leishmaniasis. Trop Med Int Health. 2001;6(11):899-905. [Link] [DOI:10.1046/j.1365-3156.2001.00754.x]
3. Padron-Nieves M, Ponte-Sucre A, Diaz E. Drug Resistance in Leishmania Parasites: Consequences, Molecular Mechanisms and Possible Treatments. Heidelberg: Springer-Verlag Wien; 2012. p. 462. [Link] [DOI:10.1007/978-3-7091-1125-3]
4. Bisacchi D, Zhou Y, Rosen BP, Mukhopadhyay R, Bordo D. Crystallization and preliminary crystallographic characterization of LmACR2, an arsenate/antimonate reductase from Leishmania major. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006;62(10):976-9. [Link] [DOI:10.1107/S1744309106033537]
5. Mukhopadhyay R, Bisacchi D, Zhou Y, Armirotti A, Bordo D. Structural characterization of the As/Sb reductase LmACR2 from Leishmania major. J Mol Biol. 2009;386(5):1229-39. [Link] [DOI:10.1016/j.jmb.2008.07.056]
6. Zhou Y, Messier N, Ouellette M, Rosen BP, Mukhopadhyay R. Leishmania major LmACR2 is a pentavalent antimony reductase that confers sensitivity to the drug pentostam. J Biol Chem. 2004;279(36):37445-51. [Link] [DOI:10.1074/jbc.M404383200]
7. Blundell TL, Sibanda BL, Montalvao RW, Brewerton S, Chelliah V, Worth CL, Harmer NJ, Davies O, Burke D. Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philos Trans R Soc Lond B Biol Sci. 2006;361(1467):413-23. [Link] [DOI:10.1098/rstb.2005.1800]
8. Cunningham ML, Zvelebil MJ, Fairlamb AH. Mechanism of inhibition of trypanothione reductase and glutathione reductase by trivalent organic arsenicals. Eur J Biochem. 1994;221(1):285-95. [Link] [DOI:10.1111/j.1432-1033.1994.tb18740.x]
9. Torres DC, Ribeiro-Alves M, Romero GA, Davila AM, Cupolillo E. Assessment of drug resistance related genes as candidate markers for treatment outcome prediction of cutaneous leishmaniasis in Brazil. Acta Trop. 2013;126(2):132-41. [Link] [DOI:10.1016/j.actatropica.2013.02.002]
10. Frezard F, Demicheli C, Ribeiro RR. Pentavalent antimonials: new perspectives for old drugs. Molecules. 2009;14(7):2317-36. [Link] [DOI:10.3390/molecules14072317]
11. Saha P, Mukhopadhyay D, Chatterjee M. Immunomodulation by chemotherapeutic agents against Leishmaniasis. Int Immunopharmacol. 2011;11(11):1668-79. [Link] [DOI:10.1016/j.intimp.2011.08.002]
12. Wyllie S, Fairlamb AH. Differential toxicity of antimonial compounds and their effects on glutathione homeostasis in a human leukaemia monocyte cell line. Biochem Pharmacol. 2006;71(3):257-67. [Link] [DOI:10.1016/j.bcp.2005.10.043]
13. Denton H, McGregor JC, Coombs GH. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem J. 2004;381(Pt 2):405-12. [Link] [DOI:10.1042/BJ20040283]
14. Grondin K, Haimeur A, Mukhopadhyay R, Rosen BP, Ouellette M. Co-amplification of the gamma-glutamylcysteine synthetase gene gsh1 and of the ABC transporter gene pgpA in arsenite-resistant Leishmania tarentolae. EMBO J. 1997;16(11):3057-65. [Link] [DOI:10.1093/emboj/16.11.3057]
15. Baiocco P, Colotti G, Franceschini S, Ilari A. Molecular basis of antimony treatment in leishmaniasis. J Med Chem. 2009;52(8):2603-12. [Link] [DOI:10.1021/jm900185q]
16. Ferreira Cdos S, Martins PS, Demicheli C, Brochu C, Ouellette M, Frezard F. Thiol-induced reduction of antimony(V) into antimony(III): a comparative study with trypanothione, cysteinyl-glycine, cysteine and glutathione. Biometals. 2003;16(3):441-6. [Link] [DOI:10.1023/A:1022823605068]
17. Frezard F, Demicheli C, Ferreira CS, Costa MA. Glutathione-induced conversion of pentavalent antimony to trivalent antimony in meglumine antimoniate. Antimicrob Agents Chemother. 2001;45(3):913-6. [Link] [DOI:10.1128/AAC.45.3.913-916.2001]
18. Vickers TJ, Fairlamb AH. Trypanothione S-transferase activity in a trypanosomatid ribosomal elongation factor 1B. J Biol Chem. 2004;279(26):27246-56. [Link] [DOI:10.1074/jbc.M311039200]
19. Yan S, Li F, Ding K, Sun H. Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione. J Biol Inorg Chem. 2003;8(6):689-97. [Link] [DOI:10.1007/s00775-003-0468-1]
20. Yan S, Wong IL, Chow LMC, Sun H. Rapid reduction of pentavalent antimony by trypanothione: potential relevance to antimonial activation. Chem Commun (Camb). 2003;(2):266-7. [Link] [DOI:10.1039/b210240d]