Volume 22, Issue 3 (2019)                   mjms 2019, 22(3): 121-128 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghan M, Salehnia M, Shahbazi S. Assessment of follicular development of immature mouse ovarian tissue encapsulated in sodium alginate grafted under the kidney capsule . mjms 2019; 22 (3) :121-128
URL: http://mjms.modares.ac.ir/article-30-29462-en.html
1- Anatomy Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Anatomy Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran , salehnim@modares.ac.ir
3- Genetics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (7715 Views)

Aims: The present study aimed to evaluate the developmental rate of ovarian follicles and the incidence of cell death in grafted immature mouse ovarian tissue encapsulated and non-capsulated in sodium alginate.
Materials and Methods: Female (NMRI) mice (n=50) were divided into 3 groups as follows: Group A; the right ovary was removed and encapsulated in sodium alginate then transplanted under kidney capsule, Group B; the right ovary was removed and without encapsulation transplanted under kidney capsule, in both transplanted groups the left ovary was intact. Group C; control group, both ovaries were intact. After transplantation, in the first and fourth estrous cycles at proestrus phase. The morphology of the grafted ovaries, and the percentage of normal follicles were evaluated using hematoxylin and eosin staining. The incidence of apoptosis cell death was evaluated by anti-BAX immunohistochemical staining.
Findings: At first and fourth estrous cycle, almost 99.5% of follicles had normal morphology and no significant difference was observed between the groups. The follicular development and growth rate in the two grafted groups, was significantly higher than the control group, moreover, these rates were higher in the capsulated group than non-capsulated once (p<0.05). In spite of the presence of some BAX positive cells in the preantral and antral follicles, there was no remarkable reaction for BAX antibody in the primordial and primary follicles in studied groups.
Conclusion: Despite the high developmental rat and premature ovarian reserve depletion in grafted groups that can affect the longevity of transplanted tissue, while sodium alginate has a positive effect on the follicular development in grafted tissue.

Full-Text [PDF 843 kb]   (1592 Downloads)    
Article Type: Original Research | Subject: Molecular Biology
Received: 2019/01/15 | Accepted: 2019/03/12

1. Donnez J, Godin PA, Qu J, Nisolle M. Gonadal cryopreservation in the young patient with gynaecological malignancy. Curr Opin Obstet Gynecol. 2000;12(1):1-9. [Link] [DOI:10.1097/00001703-200002000-00001]
2. Zhai J, Yao G, Dong F, Bu Z, Cheng Y, Sato Y, et al. In vitro activation of follicles and fresh tissue auto-transplantation in primary ovarian insufficiency patients. J Clin Endocrinol Metab. 2016;101(11):4405-12. [Link] [DOI:10.1210/jc.2016-1589]
3. Kim S, Lee Y, Lee S, Kim T. Ovarian tissue cryopreservation and transplantation in patients with cancer. Obstet Gynecol Sci. 2018;61(4):431-42. [Link] [DOI:10.5468/ogs.2018.61.4.431]
4. Damásio LCVC, Soares-Júnior JM, Iavelberg J, Maciel GAR, De Jesus Simões M, Dos Santos Simões R, et al. Heterotopic ovarian transplantation results in less apoptosis than orthotopic transplantation in a minipig model. J Ovarian Res. 2016;9:14. [Link] [DOI:10.1186/s13048-016-0223-1]
5. Wang H, Mooney S, Wen Y, Behr B, Polan ML. Follicle development in grafted mouse ovaries after cryopreservation and subcutaneous transplantation. Am J Obstet Gynecol. 2002;187(2):370-4. [Link] [DOI:10.1067/mob.2002.123606]
6. Commin L, Buff S, Rosset E, Galet C, Allard A, Bruyere P, et al. Follicle development in cryopreserved bitch ovarian tissue grafted to immunodeficient mouse. Reprod Fertil Dev. 2012;24(3):461-71. [Link] [DOI:10.1071/RD11166]
7. Gook DA, Mc Cully BA, Edgar DH, Mc Bain JC. Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Hum Reprod. 2001;16(3):417-22. [Link] [DOI:10.1093/humrep/16.3.417]
8. David A, Day JR, Cichon AL, Lefferts A, Cascalho M, Shikanov A. Restoring ovarian endocrine function with encapsulated ovarian allograft in immune competent mice. Ann Biomed Eng. 2017;45(7):1685-96. [Link] [DOI:10.1007/s10439-016-1780-6]
9. Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update. 2009;15(6):649-65. [Link] [DOI:10.1093/humupd/dmp021]
10. Liu J, Van Der Elst J, Van Den Broecke R, Dhont M. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum Reprod. 2002;17(3):605-11. [Link] [DOI:10.1093/humrep/17.3.605]
11. Torrents E, Boiso I, Barri PN, Veiga A. Applications of ovarian tissue transplantation in experimental biology and medicine. Hum Reprod Update. 2003;9(5):471-81. [Link] [DOI:10.1093/humupd/dmg036]
12. Israely T, Nevo N, Harmelin A, Neeman M, Tsafriri A. Reducing ischaemic damage in rodent ovarian xenografts transplanted into granulation tissue. Hum Reprod. 2006;21(6):1368-79. [Link] [DOI:10.1093/humrep/del010]
13. Soleimani R, Van Der Elst J, Heytens E, Van Den Broecke R, Gerris J, Dhont M, et al. Back muscle as a promising site for ovarian tissue transplantation, an animal model. Hum Reprod. 2008;23(3):619-26. [Link] [DOI:10.1093/humrep/dem405]
14. Cunha GR, Baskin L. Use of sub-renal capsule transplantation in developmental biology. Differentiation. 2016;91(4-5):4-9. [Link] [DOI:10.1016/j.diff.2015.10.007]
15. Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL. Subcapsular transplantation of tissue in the kidney. Cold Spring Harb Protoc. 2014;2014(7):737-40. [Link] [DOI:10.1101/pdb.prot078089]
16. Geng Y, Li L, Dong Y, Liu X, Li XH, Ning W. Impaired elastin deposition in Fstl1-/- lung allograft under the renal capsule. PLoS One. 2013;8(11):e81368. [Link] [DOI:10.1371/journal.pone.0081368]
17. Missbach-Guentner J, Pinkert-Leetsch D, Dullin C, Ufartes R, Hornung D, Tampe B, et al. 3D virtual histology of murine kidneys -high resolution visualization of pathological alterations by micro computed tomography. Sci Rep. 2018;8(1):1407. [Link] [DOI:10.1038/s41598-018-19773-5]
18. Luyckx V, Dolmans MM, Vanacker J, Legat C, Fortuño Moya C, Donnez J, et al. A new step toward the artificial ovary: Survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil Steril. 2014;101(4):1149-56. [Link] [DOI:10.1016/j.fertnstert.2013.12.025]
19. Oktay K, Bedoschi G, Pacheco F, Turan V, Emirdar V. First pregnancies, live birth, and in vitro fertilization outcomes after transplantation of frozen-banked ovarian tissue with a human extracellular matrix scaffold using robot-assisted minimally invasive surgery. Am J Obstet Gynecol. 2016;214(1):94.e1-9. [Link] [DOI:10.1016/j.ajog.2015.10.001]
20. Gao JM, Yan J, Li R, Li M, Yan LY, Wang TR, et al. Improvement in the quality of heterotopic allotransplanted mouse ovarian tissues with basic fibroblast growth factor and fibrin hydrogel. Hum Reprod. 2013;28(10):2784-93. [Link] [DOI:10.1093/humrep/det296]
21. Jin SY, Lei L, Shikanov A, Shea LD, Woodruff TK. A novel two-step strategy for in vitro culture of early-stage ovarian follicles in the mouse. Fertil Steril. 2010;93(8):2633-9. [Link] [DOI:10.1016/j.fertnstert.2009.10.027]
22. Vanacker J, Luyckx V, Dolmans MM, Des Rieux A, Jaeger J, Van Langendonckt A, et al. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: First step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells. Biomaterials. 2012;33(26):6079-85. [Link] [DOI:10.1016/j.biomaterials.2012.05.015]
23. King SM, Quartuccio S, Hilliard TS, Inoue K, Burdette JE. Alginate hydrogels for three-dimensional organ culture of ovaries and oviducts. J Vis Exp. 2011;(52).pii:2804. [Link] [DOI:10.3791/2804]
24. Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci. 2012;37(1):106-26. [Link] [DOI:10.1016/j.progpolymsci.2011.06.003]
25. Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv. 2017;35(5):530-44. [Link] [DOI:10.1016/j.biotechadv.2017.05.006]
26. De France KJ, Xu F, Hoare T. Structured macroporous hydrogels: Progress, challenges, and opportunities. Adv Healthc Mater. 2018;7(1):1700927. [Link] [DOI:10.1002/adhm.201700927]
27. Anderson RA, Wallace WHB, Telfer EE. Ovarian tissue cryopreservation for fertility preservation: Clinical and research perspectives. Hum Reprod Open. 2017;2017(1):hox001. [Link] [DOI:10.1093/hropen/hox001]
28. Wang G, Zhu J, Chen X, Dong H, Li Q, Zeng L, et al. Alginate based antimicrobial hydrogels formed by integrating Diels-Alder "click chemistry" and the thiol-ene reaction. RSC Adv. 2018;8(20):11036-42. [Link] [DOI:10.1039/C8RA00668G]
29. Kwiecień I, Kwiecień M. Application of polysaccharide-based hydrogels as probiotic delivery systems. Gels. 2018;4(2):47. [Link] [DOI:10.3390/gels4020047]
30. Desai N, Alex A, Abdel Hafez F, Calabro A, Goldfarb J, Fleischman A, et al. Three-dimensional in vitro follicle growth: Overview of culture models, biomaterials, design parameters and future directions. Reprod Biol Endocrinol. 2010;8:119. [Link] [DOI:10.1186/1477-7827-8-119]
31. Laronda MM, Duncan FE, Hornick JE, Xu M, Pahnke JE, Whelan KA, et al. Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J Assist Reprod Genet. 2014;31(8):1013-28. [Link] [DOI:10.1007/s10815-014-0252-x]
32. Shikanov A, Xu M, Woodruff TK, Shea LD. Interpenetrating fibrin-alginate matrices for in vitro ovarian follicle development. Biomaterials. 2009;30(29):5476-85. [Link] [DOI:10.1016/j.biomaterials.2009.06.054]
33. Nagashima J, Wildt DE, Travis AJ, Songsasen N. Follicular size and stage and gonadotropin concentration affect alginate-encapsulated in vitro growth and survival of pre- and early antral dog follicles. Reprod Fertil Dev. 2017;29(2):262-73. [Link] [DOI:10.1071/RD15004]
34. Abdi S, Salehnia M, Hosseinkhani S. Quality of oocytes derived from vitrified ovarian follicles cultured in two- and three-dimensional culture system in the presence and absence of kit ligand. Biopreserv Biobank. 2016;14(4):279-88. [Link] [DOI:10.1089/bio.2015.0069]
35. Fisch B, Abir R. Female fertility preservation: Past, present and future. Reproduction. 2018;156(1):F11-27. [Link] [DOI:10.1530/REP-17-0483]
36. Byers SL, Wiles MV, Dunn SL, Taft RA. Mouse estrous cycle identification tool and images. PLoS One. 2012;7(4):e35538. [Link] [DOI:10.1371/journal.pone.0035538]
37. Liu L, Wood GA, Morikawa L, Ayearst R, Fleming C, Mc Kerlie C. Restoration of fertility by orthotopic transplantation of frozen adult mouse ovaries. Hum Reprod. 2008;23(1):122-8. [Link] [DOI:10.1093/humrep/dem348]
38. Khalili MA, Dehghan M, Nazari S, Agha Rahimi A. Assessment of ovarian tissues autografted to various body sites followed by IVM in mouse. Iran J Reprod Med. 2014;12(3):199-204. [Link]
39. Hernandez-Fonseca H, Bosch P, Sirisathien S, Wininger JD, Massey JB, Brackett BG. Effect of site of transplantation on follicular development of human ovarian tissue transplanted into intact or castrated immunodeficient mice. Fertil Steril. 2004;81 Suppl 1:888-92. [Link] [DOI:10.1016/j.fertnstert.2003.10.017]
40. Gavish Z, Ben-Haim M, Arav A. Cryopreservation of whole murine and porcine livers. Rejuvenation Res. 2008;11(4):765-72. [Link] [DOI:10.1089/rej.2008.0706]
41. Revel A, Laufer N, Ben Meir A, Lebovich M, Mitrani E. Micro-organ ovarian transplantation enables pregnancy: A case report. Hum Reprod. 2011;26(5):1097-103. [Link] [DOI:10.1093/humrep/der063]
42. Mazoochi T, Ehteram M. Apoptosis in the ovary and follicular atresia. Feyz. 2018;22 (1):112-9. [Persian] [Link]
43. Heidegger H, Jeschke U. Human Chorionic Gonadotropin (hCG)-an endocrine, regulator of gestation and cancer. Int J Mol Sci. 2018;19(5).pii:E1502. [Link] [DOI:10.3390/ijms19051502]
44. Couse JF, Yates MM, Walker VR, Korach KS. Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) Null mice reveals hypergonadism and endocrine sex reversal in females lacking ERalpha but not ERbeta. Mol Endocrinol. 2003;17(6):1039-53. [Link] [DOI:10.1210/me.2002-0398]
45. Ma WZ, Zheng XM, Hei CC, Zhao CJ, Xie SS, Chang Q, et al. Optimal FSH usage in revascularization of allotransplanted ovarian tissue in mice. J Ovarian Res. 2017;10(1):5. [Link] [DOI:10.1186/s13048-016-0299-7]
46. Wang Y, Chang Q, Sun J, Dang L, Ma W, Hei C, et al. Effects of HMG on revascularization and follicular survival in heterotopic autotransplants of mouse ovarian tissue. Reprod Biomed Online. 2012;24(6):646-53. [Link] [DOI:10.1016/j.rbmo.2012.02.025]
47. Sadeghnia S, Akhondi MM, Hossein G, Mobini S, Hosseini L, Naderi MM, et al. Development of sheep primordial follicles encapsulated in alginate or in ovarian tissue in fresh and vitrified samples. Cryobiology. 2016;72(2):100-5. [Link] [DOI:10.1016/j.cryobiol.2016.03.001]
48. Vanacker J, Amorim CA. Alginate: A versatile biomaterial to encapsulate isolated ovarian follicles. Ann Biomed Eng. 2017;45(7):1633-49. [Link] [DOI:10.1007/s10439-017-1816-6]
49. Amoushahi M, Salehnia M, Mowla SJ, Ghorbanmehr N. Morphological and molecular aspects of in vitro culture of preantral follicles derived from vitrified ovarian tissues using a two-step culture. Cell J. 2017;19(3):332-42. [Link]
50. Lee J, Kim EJ, Kong HS, Youm HW, Kim SK, Lee JR, et al. Comparison of the oocyte quality derived from two-dimensional follicle culture methods and developmental competence of in vitro grown and matured oocytes. Biomed Res Int. 2018;2018:7907092. [Link] [DOI:10.1155/2018/7907092]
51. West ER, Xu M, Woodruff TK, Shea LD. Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials. 2007;28(30):4439-48. [Link] [DOI:10.1016/j.biomaterials.2007.07.001]
52. Xu M, West E, Shea LD, Woodruff TK. Identification of a stage-specific permissive in vitro culture environment for follicle growth and oocyte development. Biol Reprod. 2006;75(6):916-23. [Link] [DOI:10.1095/biolreprod.106.054833]
53. Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials (Basel). 2013;6(4):1285-309. [Link] [DOI:10.3390/ma6041285]
54. Rios PD, Kniazeva E, Lee HC, Xiao S, Oakes RS, Saito E, et al. Retrievable hydrogels for ovarian follicle transplantation and oocyte collection. Biotechnol Bioeng. 2018;115(8):2075-86. [Link] [DOI:10.1002/bit.26721]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.