Volume 23, Issue 3 (2020)                   mjms 2020, 23(3): 129-135 | Back to browse issues page

XML Persian Abstract Print

1- Department of Microbiology, Medical Sciences Branch, Islamic Azad University, Tehran, Iran
2- 2 Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran , mahdavivac@gmail.com
Abstract:   (1307 Views)
Aims: The common hepatitis B vaccination was designed based on alum adjuvant. This adjuvant is failed to stimulate cellular immunity so that, optimization is necessary for better stimulation of cellular immune responses. α--tocopherol is a key component of vitamin E that is considered as immunomodulatory agent to regulate immunity in order to decrease inflammation immune responses. Therefore, in the present study, the effect of α-tocopherol on the improvement of immune responses in hepatitis B vaccination was evaluated.
Materials & Methods: commercial hepatitis B vaccine was formulated with α-tocopherol at the doses of 1, 5, and 10mg. The vaccine was injected into BALB/C mice three times two weeks apart. Ten days after the last injection, blood-drawing was performed from mice groups. The levels of IFN-γ, TNF-α, IL-4, and IL-2 cytokines and IgG total antibody, as well as IgG1 and IgG2a antibody isotypes, were measured by ELISA method.
Findings: Formulated vaccine at the dose of 10mg of α-tocopherol is more potent in the significant increase of IFN-γ, TNF-α, and IL-2 cytokines and low dose result in improvement of humoral immune response.
Conclusion: Immune response of vaccine formulated with α-tocopherol was dose-dependent and at the dose of 10mg demonstrated a significant increase of Th1 response and at the dose of 1mg result in increase of antibody responses.
Full-Text [PDF 415 kb]   (602 Downloads)    
Article Type: Original Research | Subject: Immunology and Allergy
Received: 2019/05/19 | Accepted: 2020/08/4

1. Bustamante J, Rimola A, Ventura PJ, Navasa M, Cirera I, Reggiardo V, et al. Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J Hepatol. 1999;30(5):890-5. [Link] [DOI:10.1016/S0168-8278(99)80144-5]
2. Trépo Ch, Chan HL, Lok A. Hepatitis B virus infection. Lancet. 2014;384(9959):2053-63. [Link] [DOI:10.1016/S0140-6736(14)60220-8]
3. Bruss V, Lu XU, Thomssen R, Gerlich WH. Post‐translational alterations in transmembrane topology of the hepatitis B virus large envelope protein. EMBO J. 1994;13(10):2273-9. [Link] [DOI:10.1002/j.1460-2075.1994.tb06509.x]
4. Seeger Ch, Mason WS. Molecular biology of hepatitis B virus infection. Virology. 2015;479-480:672-86. [Link] [DOI:10.1016/j.virol.2015.02.031]
5. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med. 2005;11(7):791-6. [Link] [DOI:10.1038/nm1268]
6. Norder H, Couroucé AM, Coursaget P, Echevarria JM, Lee SD, Mushahwar IK, et al. Genetic diversity of hepatitis B virus strains derived worldwide: Genotypes, subgenotypes, and HBsAg subtypes. Intervirology. 2004;47(6):289-309. [Link] [DOI:10.1159/000080872]
7. Cattaneo R, Will H, Schaller H. Hepatitis B virus transcription in the infected liver. EMBO J. 1984;3(9):2191-6. [Link] [DOI:10.1002/j.1460-2075.1984.tb02113.x]
8. Chen MT, Billaud JN, Sällberg M, Guidotti LG, Chisari FV, Jones J, et al. A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen. Proc Natl Acad Sci. 2004;101(41):14913-8. [Link] [DOI:10.1073/pnas.0406282101]
9. Stuyver LJ, Locarnini SA, Lok A, Richman DD, Carman WF, Dienstag JL, et al. Nomenclature for antiviral-resistant human hepatitis B virus mutations in the polymerase region. Hepatology. 2001;33(3):751-7. [Link] [DOI:10.1053/jhep.2001.22166]
10. Farrell PM, Bieri JG, Fratantoni JF, Wood RE, Di Sant'Agnese PA. The occurrence and effects of human vitamin E deficiency: A study in patients with cystic fibrosis. J Clin Investig. 1977;60(1):233-41. [Link] [DOI:10.1172/JCI108760]
11. Saberi AH, Fang Y, McClements DJ. Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. J Colloid Interface Sci. 2013;391:95-102. [Link] [DOI:10.1016/j.jcis.2012.08.069]
12. Riese P, Schulze K, Ebensen T, Prochnow B, A Guzmán C. Vaccine adjuvants: Key tools for innovative vaccine design. Curr Top Med Chem. 2013;13(20):2562-80. [Link] [DOI:10.2174/15680266113136660183]
13. Couch RB, Bayas JM, Caso C, Mbawuike IN, López CN, Claeys C, et al. Superior antigen-specific CD4+ T-cell response with AS03-adjuvantation of a trivalent influenza vaccine in a randomised trial of adults aged 65 and older. BMC Infect Dis. 2014;14(1):425. [Link] [DOI:10.1186/1471-2334-14-425]
14. Lima KM, Dos Santos SA, Rodrigues Jr JM, Silva CL. Vaccine adjuvant: It makes the difference. Vaccine. 2004;22(19):2374-9. [Link] [DOI:10.1016/j.vaccine.2003.12.030]
15. Rezaei M, Hosseini SN, Khavari-Nejad RA, Najafi F, Mahdavi M. HBs antigen and mannose loading on the surface of iron oxide nanoparticles in order to immuno-targeting: Fabrication, characterization, cellular and humoral immunoassay. Artif Cells Nanomed Biotechnol. 2019;47(1):1543-58. [Link] [DOI:10.1080/21691401.2019.1577888]
16. Radhakrishnan AK, Mahalingam D, Selvaduray KR, Nesaretnam K. Supplementation with natural forms of vitamin E augments antigen-specific TH1-type immune response to tetanus toxoid. BioMed Res Int. 2013;2013:782067. [Link] [DOI:10.1155/2013/782067]
17. Hahn T, Jagadish B, Mash EA, Garrison K, Akporiaye ET. α-Tocopheryloxyacetic acid: A novel chemotherapeutic that stimulates the antitumor immune response. Breast Cancer Res. 2011;13(1):R4. [Link] [DOI:10.1186/bcr2808]
18. Karlsson I, Borggren M, Nielsen J, Christensen D, Williams J, Fomsgaard A. Increased humoral immunity by DNA vaccination using an α-tocopherol-based adjuvant. Hum Vaccin Immunother. 2017;13(8):1823-30. [Link] [DOI:10.1080/21645515.2017.1321183]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.