Volume 22, Issue 3 (2019)                   mjms 2019, 22(3): 141-147 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baheiraei N, Adeli Mehr A, Eyni H. Influence of Strontium Substitution on Osteogenesis of Bioglass/Gelatin Scaffold in Critically Sized rabbit Calvarial Defects. mjms. 2019; 22 (3) :141-147
URL: http://mjms.modares.ac.ir/article-30-33617-en.html
1- Hematology Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran , n.baheiraei@modares.ac.ir
2- Anatomical Sciences Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
Abstract:   (5449 Views)
Aims: Growing experiments show that biomaterials that have a bioactive glass (BG) indicate encouraging effects on bone tissue repair. Strontium-substituted BGs (BG/Sr) have been confirmed to improve bone formation while preventing bone resorption by osteoclasts.
Materials and Methods: This study aimed to evaluate the potential of strontium substitution on bioglass/gelatin (Gel) osteogenesis in critically sized rabbit calvarial defects. Defects were treated with Gel-BG or Gel-BG/Sr scaffolds and one defect was left unfilled as a control. Bone regeneration and mineralization process were evaluated by hematoxylin and eosin, Masson’s trichrome and Alizarin Red staining after 4 and 8 weeks post-implantation.
Findings: Based on the histological findings, newly formed bone area in scaffolds containing BG/Sr was greater than that without Sr after 8 weeks.
Conclusion: Our results specified that BG/Sr containing scaffolds could better increase bone regeneration than those without Sr and could be considered as a bone graft in bone tissue engineering.
Full-Text [PDF 1003 kb]   (1319 Downloads)    
Article Type: Original Research | Subject: Stem Cells
Received: 2018/06/7 | Accepted: 2019/07/2

1. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN, et al. Bone-graft substitutes: Facts, fictions, and applications. J Bone Joint Surg Am. 2001;83-A Suppl 2 Pt 2:98-103. [Link] [DOI:10.2106/00004623-200100022-00007]
2. Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B Appl Biomater. 2008;85(2):573-82. [Link] [DOI:10.1002/jbm.b.30962]
3. Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014;2:14017. [Link] [DOI:10.1038/boneres.2014.17]
4. Jones JR, Hench LL. Regeneration of trabecular bone using porous ceramics. Curr Opin Solid State Mater Sci. 2003;7(4-5):301-7. [Link] [DOI:10.1016/j.cossms.2003.09.012]
5. Arahira T, Todo M. Effects of proliferation and differentiation of mesenchymal stem cells on compressive mechanical behavior of collagen/β-TCP composite scaffold. J Mech Behav Biomed Mater. 2014;39:218-30. [Link] [DOI:10.1016/j.jmbbm.2014.07.013]
6. Zou C, Weng W, Deng X, Cheng K, Liu X, Du P, et al. Preparation and characterization of porous beta-tricalcium phosphate/collagen composites with an integrated structure. Biomaterials. 2005;26(26):5276-84. [Link] [DOI:10.1016/j.biomaterials.2005.01.064]
7. Baheiraei N, Zare Jalise S, Sanei SA. Recent advances in bioglass applications for bone tissue engineering. Pathobiol Res. 2017;20(2):1-22. [Persian] [Link]
8. Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: A review. Mater Sci Eng C Mater Biol Appl. 2017;71:1175-91. [Link] [DOI:10.1016/j.msec.2016.10.014]
9. Krishnan V, Lakshmi T. Bioglass: A novel biocompatible innovation. J Adv Pharm Technol Res. 2013;4(2):78-83. [Link] [DOI:10.4103/2231-4040.111523]
10. Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O'Donnell MD, Hill RG, et al. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials. 2010;31(14):3949-56. [Link] [DOI:10.1016/j.biomaterials.2010.01.121]
11. Courthéoux L, Lao J, Nedelec JM, Jallot E. Controlled bioactivity in zinc-doped sol−gel-derived binary bioactive glasses. J Phys Chem C. 2008;112(35):13663-7. [Link] [DOI:10.1021/jp8044498]
12. Huang M, Hill RG, Rawlinson SCF. Zinc bioglasses regulate mineralization in human dental pulp stem cells. Dent Mater. 2017;33(5):543-52. [Link] [DOI:10.1016/j.dental.2017.03.011]
13. Dietrich E, Oudadesse H, Lucas-Girot A, Mami M. In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J Biomed Mater Res A. 2009;88(4):1087-96. [Link] [DOI:10.1002/jbm.a.31901]
14. Mariappan CR, Ranga N. Influence of silver on the structure, dielectric and antibacterial effect of silver doped bioglass-ceramic nanoparticles. Ceram Int. 2017;43(2):2196-201. [Link] [DOI:10.1016/j.ceramint.2016.11.003]
15. Beattie JH, Avenell A. Trace element nutrition and bone metabolism. Nutr Res Rev. 1992;5(1):167-88. [Link] [DOI:10.1079/NRR19920013]
16. Sun ZL, Wataha JC, Hanks CT. Effects of metal ions on osteoblast-like cell metabolism and differentiation. J Biomed Mater Res. 1997;34(1):29-37. https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<29::AID-JBM5>3.0.CO;2-P [Link] [DOI:10.1002/(SICI)1097-4636(199701)34:13.0.CO;2-P]
17. Marie PJ, Ammann P, Boivin G, Rey C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001;69(3):121-9. [Link] [DOI:10.1007/s002230010055]
18. Marie PJ. Strontium ranelate: A physiological approach for optimizing bone formation and resorption. Bone. 2006;38(2 Suppl 1):S10-4. [Link] [DOI:10.1016/j.bone.2005.07.029]
19. Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, et al. Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res. 1996;11(9):1302-11. [Link] [DOI:10.1002/jbmr.5650110915]
20. Guida A, Towler MR, Wall JG, Hill RG, Eramo S. Preliminary work on the antibacterial effect of strontium in glass ionomer cements. J Mater Sci Lett. 2003;22(20):1401-3. [Link] [DOI:10.1023/A:1025794927195]
21. Xue W, Moore JL, Hosick HL, Bose S, Bandyopadhyay A, Lu WW, et al. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J Biomed Mater Res A. 2006;79(4):804-14. [Link] [DOI:10.1002/jbm.a.30815]
22. Bellucci D, Sola A, Cacciotti I, Bartoli C, Gazzarri M, Bianco A, et al. Mg- and/or Sr-doped tricalcium phosphate/bioactive glass composites: Synthesis, microstructure and biological responsiveness. Mater Sci Eng C Mater Biol Appl. 2014;42:312-24. [Link] [DOI:10.1016/j.msec.2014.05.047]
23. Day RM. Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 2005;11(5-6):768-77. [Link] [DOI:10.1089/ten.2005.11.768]
24. Vichery C, Nedelec JM. Bioactive glass nanoparticles: From synthesis to materials design for biomedical applications. Materials (Basel). 2016;9(4).pii:E288. [Link] [DOI:10.3390/ma9040288]
25. Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri MR, et al. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int. 2010;36(8):2431-9. [Link] [DOI:10.1016/j.ceramint.2010.07.010]
26. Nadeem D, Kiamehr M, Yang X, Su B. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2013;33(5):2669-78. [Link] [DOI:10.1016/j.msec.2013.02.021]
27. Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R. Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J. 2010;158(2):353-61. [Link] [DOI:10.1016/j.cej.2010.02.003]
28. Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59(4-5):207-33. [Link] [DOI:10.1016/j.addr.2007.03.012]
29. Zare Jalise S, Baheiraei N, Bagheri F. The effects of strontium incorporation on a novel gelatin/bioactive glass bone graft: In vitro and in vivo characterization. Ceram Int. 2018;44(12):14217-27. [Link] [DOI:10.1016/j.ceramint.2018.05.025]
30. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: Recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363-408. [Link] [DOI:10.1615/CritRevBiomedEng.v40.i5.10]
31. Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414-25. [Link] [DOI:10.1016/j.biomaterials.2005.11.025]
32. Marie PJ, Felsenberg D, Brandi ML. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos Int. 2011;22(6):1659-67. [Link] [DOI:10.1007/s00198-010-1369-0]
33. Reginster JY, Felsenberg D, Boonen S, Diez-Perez A, Rizzoli R, Brandi ML, et al. Effects of long-term strontium ranelate treatment on the risk of nonvertebral and vertebral fractures in postmenopausal osteoporosis: Results of a five-year, randomized, placebo-controlled trial. Arthritis Rheum. 2008;58(6):1687-95. [Link] [DOI:10.1002/art.23461]
34. Tenti S, Cheleschi S, Guidelli GM, Galeazzi M, Fioravanti A. What about strontium ranelate in osteoarthritis? Doubts and securities. Mod Rheumatol. 2014;24(6):881-4. [Link] [DOI:10.3109/14397595.2014.888156]
35. Khan PK, Mahato A, Kundu B, Nandi SK, Mukherjee P, Datta S, et al. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds. Sci Rep. 2016;6:32964. [Link] [DOI:10.1038/srep32964]
36. Neves N, Linhares D, Costa G, Ribeiro CC, Barbosa MA. In vivo and clinical application of strontium-enriched biomaterials for bone regeneration: A systematic review. Bone Joint Res. 2017;6(6):366-75. [Link] [DOI:10.1302/2046-3758.66.BJR-2016-0311.R1]
37. Zhang Q, Chen X, Geng S, Wei L, Miron RJ, Zhao Y, et al. Nanogel-based scaffolds fabricated for bone regeneration with mesoporous bioactive glass and strontium: In vitro and in vivo characterization. J Biomed Mater Res A. 2017;105(4):1175-83. [Link] [DOI:10.1002/jbm.a.35980]
38. Zhao S, Zhang J, Zhu M, Zhang Y, Liu Z, Tao C, et al. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomaterialia. 2015;12:270-80. [Link] [DOI:10.1016/j.actbio.2014.10.015]
39. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3:15005. [Link] [DOI:10.1038/boneres.2015.5]
40. Yang F, Yang D, Tu J, Zheng Q, Cai L, Wang L. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells. 2011;29(6):981-91. [Link] [DOI:10.1002/stem.646]
41. Wang X, Wang Y, Li L, Gu Z, Xie H, Yu X. Stimulations of strontium-doped calcium polyphosphate for bone tissue engineering to protein secretion and mRNA expression of the angiogenic growth factors from endothelial cells in vitro. Ceram Int. 2014;40(5):6999-7005. [Link] [DOI:10.1016/j.ceramint.2013.12.027]
42. Zhao F, Lei B, Li X, Mo Y, Wang R, Chen D, et al. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials. 2018;178:36-47. [Link] [DOI:10.1016/j.biomaterials.2018.06.004]
43. Kargozar S, Lotfibakhshaiesh N, Ai J, Mozafari M, Brouki Milan P, Hamzehlou S, et al. Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities. Acta Biomaterialia. 2017;58:502-14. [Link] [DOI:10.1016/j.actbio.2017.06.021]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.