Volume 22, Issue 4 (2019)                   mjms 2019, 22(4): 189-196 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi Z, Hayati Roodbari N, Parivar K, Salehnia M. Lysophosphatidic Acid Effect on Improvement of Follicular Development and Increasing the Expression of Vascular Endothelial Growth Factor during Human Tissue Culture and after Transplantation. mjms. 2019; 22 (4) :189-196
URL: http://mjms.modares.ac.ir/article-30-35493-en.html
1- Biology Department, Basic Science Faculty, Science & Research Branch, Islamic Azad University, Tehran, Iran
2- Anatomy Department, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran , salehnim@modares.ac.ir
Abstract:   (3603 Views)
Aims: The aim of the present study was to evaluate the effects of lysophosphatidic acid (LPA) supplementation of human ovarian tissue culture media on the morphology of tissue and alteration in angiogenesis by expression of vascular endothelial growth factor (VEGF) after transplantation.
Materials & Methods: In the present experimental study, the human ovarian tissues (n=8) after collection from female-to-male transsexual people, were cut into small fragments (n=98). Then, vitrified-warmed and cultured 24 hours in two groups in the presence and absence of LPA, and finally they were transplanted to γ-irradiated mice (n=13). After two weeks the morphology of tissues was studied by hematoxylin and eosin staining and VEGF protein was detected by immunohistochemistry. The expression of VEGF gene was evaluated by real time RT-PCR.
Results: The morphology of both transplanted tissues was well preserved and follicles at different developmental stages were seen in all studied groups. Significantly a higher expression of VEGF gene was observed in the LPA-treated group compared to the non-treated once (p<0.05). Several blood vessels were shown positive reactions for VEGF antibody as green color in stroma of ovarian tissue sections in all studied groups.
Conclusion: Supplementation of human ovarian tissue culture media with LPA before transplantation could increase the expression of VEGF gene related to angiogenesis.
Full-Text [PDF 830 kb]   (382 Downloads)    
Article Type: Original Research | Subject: Embryology
Received: 2019/08/11 | Accepted: 2019/12/8

1. Kim S, Lee Y, Lee S, Kim T. Ovarian tissue cryopreservation and transplantation in patients with cancer. Obstet Gynecol Sci. 2018;61(4):431-42. [Link] [DOI:10.5468/ogs.2018.61.4.431]
2. Donfack NJ, Alves KA, Araújo VR, Cordova A, Figueiredo JR, Smitz J, et al. Expectations and limitations of ovarian tissue transplantation. Zygote. 2017;25(4):391-403. [Link] [DOI:10.1017/S0967199417000338]
3. Jones GL, Hughes J, Mahmoodi N, Greenfield D, Brauten-Smith G, Skull J, et al. Observational study of the development and evaluation of a fertility preservation patient decision aid for teenage and adult women diagnosed with cancer: The Cancer, Fertility and Me research protocol. BMJ Open. 2017;7(3):e013219. [Link] [DOI:10.1136/bmjopen-2016-013219]
4. Dittrich R, Lotz L, Fehm T, Krüssel J, Von Wolff M, Toth B, et al. Xenotransplantation of cryopreserved human ovarian tissue-a systematic review of MII oocyte maturation and discussion of it as a realistic option for restoring fertility after cancer treatment. Fertil Steril. 2015;103(6):1557-65. [Link] [DOI:10.1016/j.fertnstert.2015.03.001]
5. Xie Sh, Zhang X, Chen W, Xie Ch, Chen W, Cheng P, et al. Developmental status: Impact of short-term ischemia on follicular survival of whole ovarian transplantation in a rabbit model. PLoS One. 2015;10(8):e0135049. [Link] [DOI:10.1371/journal.pone.0135049]
6. Liu J, Van Der Elst J, Van Den Broecke R, Dhont M. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum Reprod. 2002;17(3):605-11. [Link] [DOI:10.1093/humrep/17.3.605]
7. Israely T, Nevo N, Harmelin A, Neeman M, Tsafriri A. Reducing ischaemic damage in rodent ovarian xenografts transplanted into granulation tissue. Hum Reprod. 2006;21(6):1368-79. [Link] [DOI:10.1093/humrep/del010]
8. Parsley WM, Perez-Meza D. Review of factors affecting the growth and survival of follicular grafts. J Cutan Aesthet Surg. 2010;3(2):69-75. [Link]
9. Demeestere I, Simon P, Buxant F, Robin V, Fernandez SA, Centner J, et al. Ovarian function and spontaneous pregnancy after combined heterotopic and orthotopic cryopreserved ovarian tissue transplantation in a patient previously treated with bone marrow transplantation: Case report. Hum Reprod. 2006;21(8):2010-4. [Link] [DOI:10.1093/humrep/del092]
10. Pacheco F, Oktay K. Current success and efficiency of autologous ovarian transplantation: A meta-analysis. Reprod Sci. 2017;24(8):1111-20. [Link] [DOI:10.1177/1933719117702251]
11. Kang BJ, Wang Y, Zhang L, Xiao Z, Li SW. bFGF and VEGF improve the quality of vitrified-thawed human ovarian tissues after xenotransplantation to SCID mice. J Assist Reprod Genet. 2016;33(2):281-9. [Link] [DOI:10.1007/s10815-015-0628-6]
12. Zand-Vakili M, Golkar-Narenji A, Mozdziak PE, Eimani H. An in vitro study on oocyte and follicles of transplanted ovaries treated with vascular endothelial growth factor. J Turk Ger Gynecol Assoc. 2017;18(4):167-73. [Link] [DOI:10.4274/jtgga.2017.0026]
13. Cho IA, Lee YJ, Lee HJ, Choi IY, Shin JK, Lee SA, et al. Angiopoietin-1 and-2 and vascular endothelial growth factor expression in ovarian grafts after cryopreservation using two methods. Clin Exp Reprod Med. 2018;45(3):143-8. [Link] [DOI:10.5653/cerm.2018.45.3.143]
14. Labied S, Delforge Y, Munaut C, Blacher S, Colige A, Delcombel R, et al. Isoform 111 of vascular endothelial growth factor (VEGF111) improves angiogenesis of ovarian tissue xenotransplantation. Transplantation. 2013;95(3):426-33. [Link] [DOI:10.1097/TP.0b013e318279965c]
15. Demeestere I, Simon P, Emiliani S, Delbaere A, Englert Y. Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Updat. 2009;15(6):649-65. [Link] [DOI:10.1093/humupd/dmp021]
16. Kolusari A, Okyay AG, Koçkaya EA. The effect of erythropoietin in preventing ischemia-reperfusion injury in ovarian tissue transplantation. Reprod Sci. 2018;25(3):406-13. [Link] [DOI:10.1177/1933719117715127]
17. Israely T, Dafni H, Nevo N, Tsafriri A, Neeman M. Angiogenesis in ectopic ovarian xenotransplantation: Multiparameter characterization of the neovasculature by dynamic contrast‐enhanced MRI. Magnetic Reson Med. 2004;52(4):741-50. [Link] [DOI:10.1002/mrm.20203]
18. Mohammadi Z, Hayati Roodbari N, Parivar K, Salehnia M. Supplementation of culture media with lysophosphatidic acid improve the follicular development of human ovarian tissue after xenotransplantaion into back muscle of γ- Irradiated mice. Cell J. 2020;22(3):358-66. [Link]
19. Abedpour N, Salehnia M, Ghorbanmehr N. Effect of lysophosphatidic acid on the follicular development and the expression of lysophosphatidic acid receptor genes during in vitro culture of mouse ovary. Vet Res Forum. 2018;9(1):59-66. [Link]
20. Ye X, Ishii I, Kingsbury MA, Chun J. Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochimica et Biophysica Acta (BBA)-Mol Cell Biol Lipids. 2002;1585(2-3):108-13. [Link] [DOI:10.1016/S1388-1981(02)00330-X]
21. Sinderewicz E, Grycmacher K, Boruszewska D, Kowalczyk-Zięba I, Staszkiewicz J, Ślężak T, et al. Expression of factors involved in apoptosis and cell survival is correlated with enzymes synthesizing lysophosphatidic acid and its receptors in granulosa cells originating from different types of bovine ovarian follicles. Reprod Biol Endocrinol. 2017;15(1):72. [Link] [DOI:10.1186/s12958-017-0287-9]
22. Ye X. Lysophospholipid signaling in the function and pathology of the reproductive system. Hum Reprod Updat. 2008;14(5):519-36. [Link] [DOI:10.1093/humupd/dmn023]
23. Wocławek-Potocka I, Rawińska P, Kowalczyk-Zieba I, Boruszewska D, Sinderewicz E, Waśniewski T, et al. Lysophosphatidic acid (LPA) signaling in human and ruminant reproductive tract. Mediators of inflammation. 2014;2014:649702. [Link] [DOI:10.1155/2014/649702]
24. Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, et al. LPA receptors: Subtypes and biological actions. Ann Rev Pharmacol Toxicol. 2010;50:157-86. [Link] [DOI:10.1146/annurev.pharmtox.010909.105753]
25. Yung YC, Stoddard NC, Chun J. LPA receptor signaling: Pharmacology, physiology, and pathophysiology. J Lipid Res. 2014;55(7):1192-214. [Link] [DOI:10.1194/jlr.R046458]
26. Sheng X, Yung YC, Chen A, Chun J. LPA signaling during vascular development. Development. 2015;142(8):1390-5. [Link] [DOI:10.1242/dev.121723]
27. Wasniewski T, Woclawek-Potocka I. Altered expression of lysophosphatidic acid receptors, in association with the synthesis of estrogens and androgens in type 1 endometrial cancer biology. Gynecol Endocrinol. 2018;34(5):422-7. [Link] [DOI:10.1080/09513590.2017.1409707]
28. Chen SU, Chou CH, Lee H, Ho CH, Lin CW, Yang YS. Lysophosphatidic acid up-regulates expression of interleukin-8 and-6 in granulosa-lutein cells through its receptors and nuclear factor-κB dependent pathways: Implications for angiogenesis of corpus luteum and ovarian hyperstimulation syndrome. J Clin Endocrinol Metab. 2008;93(3):935-43. [Link] [DOI:10.1210/jc.2007-1512]
29. Hisano Y, Hla T. Bioactive lysolipids in cancer and angiogenesis. Pharmacol Ther. 2019;193:91-8. [Link] [DOI:10.1016/j.pharmthera.2018.07.006]
30. Ramezani M, Salehnia M, Jafarabadi M. Short term culture of vitrified human ovarian cortical tissue to assess the cryopreservation outcome: Molecular and morphological analysis. J Reprod Infertil. 2017;18(1):162-71. [Link]
31. Abdollahi M, Salehnia M, Salehpour S, Ghorbanmehr N. Human ovarian tissue vitrification/warming has minor effect on the expression of apoptosis-related genes. Iran Biomed J. 2013;17(4):179-86. [Link]
32. Boruszewska D, Sinderewicz E, Kowalczyk-Zieba I, Grycmacher K, Woclawek-Potocka I. The effect of lysophosphatidic acid during in vitro maturation of bovine cumulus-oocyte complexes: Cumulus expansion, glucose metabolism and expression of genes involved in the ovulatory cascade, oocyte and blastocyst competence. Reprod Biol Endocrinol. 2015;13(1):44. [Link] [DOI:10.1186/s12958-015-0044-x]
33. Teo ST, Yung YC, Herr DR, Chun J. Lysophosphatidic acid in vascular development and disease. IUBMB Life. 2009;61(8):791-9. [Link] [DOI:10.1002/iub.220]
34. Tanaka M, Okudaira Sh Kishi Y, Ohkawa R, Iseki S, Ota M, et al. Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem. 2006;281(35):25822-30. [Link] [DOI:10.1074/jbc.M605142200]
35. Van Meeteren LA, Ruurs P, Stortelers C, Bouwman P, Van Rooijen MA, Pradere JP, et al. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol. 2006;26(13):5015-22. [Link] [DOI:10.1128/MCB.02419-05]
36. Yukiura H, Hama K, Nakanaga K, Tanaka M, Asaoka Y, Okudaira Sh, et al. Autotaxin regulates vascular development via multiple lysophosphatidic acid (LPA) receptors in zebrafish. J Biol Chem. 2011;286(51):43972-83. [Link] [DOI:10.1074/jbc.M111.301093]
37. Park SY, Jeong KJ, Lee J, Yoon DS, Choi WS, Kim YK, et al. Hypoxia enhances LPA-induced HIF-1α and VEGF expression: Their inhibition by resveratrol. Cancer Lett. 2007;258(1):63-9. [Link] [DOI:10.1016/j.canlet.2007.08.011]
38. Lin CI, Chen CN, Huang MT, Lee SJ, Lin CH, Chang CC, et al. Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA1/3, COX-2, and NF-κB activation-and EGFR transactivation-dependent mechanisms. Cell Signal. 2008;20(10):1804-14. [Link] [DOI:10.1016/j.cellsig.2008.06.008]
39. Rivera-Lopez CM, Tucker AL, Lynch KR. Lysophosphatidic acid (LPA) and angiogenesis. Angiogenesis. 2008;11(3):301-10. [Link] [DOI:10.1007/s10456-008-9113-5]
40. Redmer DA, Doraiswamy V, Bortnem BJ, Fisher K, Jablonka-Shariff A, Grazul-Bilska AT, et al. Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum. Biol Reprod. 2001;65(3):879-89. [Link] [DOI:10.1095/biolreprod65.3.879]
41. Hwang SU, Kim KJ, Kim E, Yoon JD, Park KM, Jin M, et al. Lysophosphatidic acid increases in vitro maturation efficiency via uPA-uPAR signaling pathway in cumulus cells. Theriogenology. 2018;113:197-207. [Link] [DOI:10.1016/j.theriogenology.2018.02.020]
42. Lee J, Park SY, Lee EK, Park CG, Chung HC, Rha SY, et al. Activation of hypoxia-inducible factor-1α is necessary for lysophosphatidic acid-induced vascular endothelial growth factor expression. Clin Cancer Res. 2006;12(21):6351-8. [Link] [DOI:10.1158/1078-0432.CCR-06-1252]
43. Okudaira Sh, Yukiura H, Aoki J. Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie. 2010;92(6):698-706. [Link] [DOI:10.1016/j.biochi.2010.04.015]

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.