Volume 23, Issue 3 (2020)                   Pathobiol Res 2020, 23(3): 157-163 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kianfar R, Soleimanjahi H. Investigation of the Viral Fusion Proteins Mechanism and Their Analysis in Different Viruses. Pathobiol Res. 2020; 23 (3) :157-163
URL: http://mjms.modares.ac.ir/article-30-36409-en.html
1- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran , soleim_h@modares.ac.ir
Abstract:   (385 Views)
Viral fusion protein through protected areas called fusion peptide are essential for entry of the virus into the host cell by membrane integration. Fusion phenomenon occurs at the host cell surface or in the cytoplasmic compounds and in cytoplasmic components. The fusion proteins are divided into three categories according to variations that are likely during the fusion. In the first category, which includes viruses such as orthomixo, paramyxo, filo, corona, and retroviruses, definite domains of fusion proteins are cleaved and removed and they become mature and functional. The second group of fusion proteins is alpha and flaviviruses become their functional form without cleavage. The third category also includes viruses such as vesicular stomatitis, herpes simplex, and baculovirus, they have common features of the first and second categories.
The changes in fusion protein in the levels before and after fusion, description of fusion proteins in viruses such as influenza, filo, and reoviruses as a prototype of fusion protein viruses and their therapeutic applications of fusion protein as potential drugs such as Lactoferrin and Enfuvertide in preventing the occurrence of fusion phenomenon is an important issue for consideration about multiplication and virus entry.
Full-Text [PDF 927 kb]   (53 Downloads)    
Article Type: Analytic Review | Subject: Virology
Received: 2019/09/14 | Accepted: 2020/08/19 | Published: 2020/09/20
* Corresponding Author Address: Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116

1. Wawra S, Djamei A, Albert I, Nürnberger T, Kahmann R, Van West P. In vitro translocation experiments with RxLR-reporter fusion proteins of Avr1b from Phytophthora sojae and AVR3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells. Mol Plant Microbe Interact. 2013;26(5):528-36. [Link] [DOI:10.1094/MPMI-08-12-0200-R]
2. Soleimanjahi H, Ghaderi M. Medical-molecular virology. 2nd Edition. Tehran: Research Center of Tarbiat Modares University; 2016. [Persian] [Link]
3. Bianchi E, Doe B, Goulding D, Wright GJ. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature. 2014;508(7497):483-7. [Link] [DOI:10.1038/nature13203]
4. Floyd DL, Ragains JR, Skehel JJ, Harrison SC, Van Oijen AM. Single-particle kinetics of influenza virus membrane fusion. Proc Natl Acad Sci. 2008;105(40):15382-7. [Link] [DOI:10.1073/pnas.0807771105]
5. Fédry J, Liu Y, Péhau-Arnaudet G, Pei J, Li W, Tortorici MA, et al. The ancient gamete fusogen HAP2 is a eukaryotic class II fusion protein. Cell. 2017;168(5):904-15. [Link] [DOI:10.1016/j.cell.2017.01.024]
6. Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC. Crystal structure of glycoprotein B from herpes simplex virus 1. Science. 2006;313(5784):217-20. [Link] [DOI:10.1126/science.1126548]
7. Harrison SC. Viral membrane fusion. Virology. 2015;479:498-507. [Link] [DOI:10.1016/j.virol.2015.03.043]
8. Kielian M. Mechanisms of virus membrane fusion proteins. Annu Rev Virol. 2014;1:171-89. [Link] [DOI:10.1146/annurev-virology-031413-085521]
9. Bosch BJ, Bartelink W, Rottier PJ. Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J Virol. 2008;82(17):8887-90. [Link] [DOI:10.1128/JVI.00415-08]
10. Modis Y. Relating structure to evolution in class II viral membrane fusion proteins. Curr Opin Virol. 2014;5:34-41. [Link] [DOI:10.1016/j.coviro.2014.01.009]
11. Backovic M, Jardetzky TS. Class III viral membrane fusion proteins. Curr Opin Struct Biol. 2009;19(2):189-96. [Link] [DOI:10.1016/j.sbi.2009.02.012]
12. Yang R, Zhang G, Zhang F, Li Z, Huang C. Membrane permeabilization design of antimicrobial peptides based on chikungunya virus fusion domain scaffold and its antibacterial activity against gram-positive Streptococcus pneumoniae in respiratory infection. Biochimie. 2018;146:139-47. [Link] [DOI:10.1016/j.biochi.2017.12.007]
13. Apellániz B, Huarte N, Largo E, Nieva JL. The three lives of viral fusion peptides. Chem Phys Lipids. 2014;181:40-55. [Link] [DOI:10.1016/j.chemphyslip.2014.03.003]
14. Harrison SC. Viral membrane fusion. Nat Struct Mol Biol. 2008;15(7):690-8. [Link] [DOI:10.1038/nsmb.1456]
15. Feizi N, Mehrbod P, Romani B, Soleimanjahi H, Bamdad T, Feizi A, et al. Autophagy induction regulates influenza virus replication in a time-dependent manner. J Med Microbiol. 2017;66(4):536-41. [Link] [DOI:10.1099/jmm.0.000455]
16. Yazdanian M, Memarnejadian A, Mahdavi M, Motevalli F, Sadat SM, Vahabpour R, et al. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice. Adv Biomed Res. 2015;4:13. [Link] [DOI:10.4103/2277-9175.148296]
17. Blijleven JS, Boonstra S, Onck PR, Van Der Giessen E, Van Oijen AM. Mechanisms of influenza viral membrane fusion. Semin Cell Dev Biol. 2016;60:78-88. [Link] [DOI:10.1016/j.semcdb.2016.07.007]
18. Hunt CL, Lennemann NJ, Maury W. Filovirus entry: A novelty in the viral fusion world. Viruses. 2012;4(2):258-75. [Link] [DOI:10.3390/v4020258]
19. Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 2010;6(9):e1001110. [Link] [DOI:10.1371/journal.ppat.1001110]
20. Saeedi A, Ghaemi A, Tabarraei A, Moradi A, Gorji A, Semnani S, et al. Enhanced cell immune responses to hepatitis C virus core by novel heterologous DNA prime/lambda nanoparticles boost in mice. Virus Genes. 2014;49(1):11-21. [Link] [DOI:10.1007/s11262-014-1070-z]
21. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature. 2011;477(7364):340-3. [Link] [DOI:10.1038/nature10348]
22. Miller EH, Chandran K. Filovirus entry into cells-new insights. Curr Opin Virol. 2012;2(2):206-14. [Link] [DOI:10.1016/j.coviro.2012.02.015]
23. Banijamali RS, Soleimanjahi H, Soudi S, Karimi H. The effect of oncolytic reovirus infection on nitric oxide secretion and induction of apoptosis in adipose tissue-derived mesenchymal stem cells. Iran J Med Microbiol. 2018;12(3):218-29. [Link] [DOI:10.30699/ijmm.12.3.218]
24. Guo H, Sun X, Yan L, Shao L, Fang Q. The NS16 protein of aquareovirus-C is a fusion-associated small transmembrane (FAST) protein, and its activity can be enhanced by the nonstructural protein NS26. Virus Res. 2013;171(1):129-37. [Link] [DOI:10.1016/j.virusres.2012.11.011]
25. Thalmann CM, Cummins DM, Yu M, Lunt R, Pritchard LI, Hansson E, et al. Broome virus, a new fusogenic Orthoreovirus species isolated from an Australian fruit bat. Virology. 2010;402(1):26-40. [Link] [DOI:10.1016/j.virol.2009.11.048]
26. Boutilier J, Duncan R. The reovirus fusion-associated small transmembrane (FAST) proteins: Virus-encoded cellular fusogens. Curr Top Membr 2011;68:107-40. [Link] [DOI:10.1016/B978-0-12-385891-7.00005-2]
27. Ciechonska M, Duncan R. Reovirus FAST proteins: Virus-encoded cellular fusogens. Trends Microbiol. 2014;22(12):715-24. [Link] [DOI:10.1016/j.tim.2014.08.005]
28. Gomes B, Augusto MT, Felício MR, Hollmann A, Franco OL, Gonçalves S, et al. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv. 2018;36(2):415-29. [Link] [DOI:10.1016/j.biotechadv.2018.01.004]
29. Matos PM, Castanho MA, Santos NC. HIV-1 fusion inhibitor peptides enfuvirtide and T-1249 interact with erythrocyte and lymphocyte membranes. PLoS One. 2010;5(3):e9830. [Link] [DOI:10.1371/journal.pone.0009830]
30. Ashkenazi A, Wexler-Cohen Y, Shai Y. Multifaceted action of Fuzeon as virus-cell membrane fusion inhibitor. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2011;1808(10):2352-8. [Link] [DOI:10.1016/j.bbamem.2011.06.020]
31. Jamjian MC, McNicholl IR. Enfuvirtide: First fusion inhibitor for treatment of HIV infection. Am J Health Syst Pharm. 2004;61(12):1242-7. [Link] [DOI:10.1093/ajhp/61.12.1242]

Add your comments about this article : Your username or Email:

Send email to the article author