Volume 22, Issue 4 (2019)                   mjms 2019, 22(4): 203-210 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baimani M, Mokhtari M. Investigation of Combination Effect of Doxorubicin and Zinc Oxide Nanoparticles on the Expression of Long Non-Coding RNA INXS in MCF-7 Breast Cancer Cells. mjms. 2019; 22 (4) :203-210
URL: http://mjms.modares.ac.ir/article-30-37701-en.html
1- Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran
2- Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran , mj_mokhtari@zariau.ac.ir
Abstract:   (815 Views)
Aims: The combined therapy of cancer is more effective than using a single drug to treat. In the present study, the anticancer effects of doxorubicin and doxorubicin in combination with zinc oxide nanoparticles on the MCF-7 breast cancer cells were investigated.
Materials & Methods: MCF-7 cells were cultured in RPMI1640 medium. The number of viable cells and the activity of mitochondrial dehydrogenase enzyme were evaluated by MTT assay for 24, 48, and 72 hours and IC50 was determined. RNA was extracted and then cDNA was synthesized. Specific primers for the INXS and TBP genes were designed using proprietary software. The expression level of INXS gene compared with TBP reference gene using Real-Time PCR method was assessed.
Findings: The expression of the INXS gene in doxorubicin-treated MCF-7 cells at 24, 48, and 72 hours was 7.93, 1.71, and 0.19, respectively, and in doxorubicin-treated cells with zinc oxide nanoparticles was changed 1.81, 6.34, and 15.96 at 24, 48, and 72 hours, respectively.
Conclusion: Simultaneous treatment with doxorubicin and zinc oxide nanoparticles at low concentrations (3.125 and 6.25) can cause more cell death than doxorubicin treatment alone. This may be due to the facilitation of doxorubicin entry into the cell in the presence of zinc oxide nanoparticles.
Full-Text [PDF 917 kb]   (251 Downloads)    
Article Type: Original Research | Subject: Cell Therapy
Received: 2019/10/28 | Accepted: 2020/05/9
* Corresponding Author Address: Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran. Postal Code: 7341617184

References
1. Nafissi N, Khayamzadeh M, Zeinali Z, Pazooki D, Hosseini M, Akbari ME. Epidemiology and histopathology of breast cancer in Iran versus other Middle Eastern countries. Middle East J Cancer. 2018;9(3):243-51. [Link]
2. Waks AG, Winer EP. Breast cancer treatment: A review. Jama. 2019;321(3):288-300. [Link] [DOI:10.1001/jama.2018.19323]
3. Nurgali K, Jagoe RT, Abalo R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?. Front Pharmacol. 2018;9:245. [Link] [DOI:10.3389/fphar.2018.00245]
4. Franco YL, Vaidya TR, Ait-Oudhia S. Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer. 2018;10:131-41. [Link] [DOI:10.2147/BCTT.S170239]
5. Abdullah M, Alam S, Zafar W, Majid A. Diffusion lung capacity changes in hodgkin lymphoma patients before and after ABVD chemotherapy. J Ayub Med Coll Abbottabad. 2016;28(2):289-92. [Link]
6. Cappetta D, De Angelis A, Sapio L, Prezioso L, Illiano M, Quaini F, et al. Oxidative stress and cellular response to doxorubicin: A common factor in the complex milieu of anthracycline cardiotoxicity. Oxid Med Cell Longev. 2017;2017:1521020. [Link] [DOI:10.1155/2017/1521020]
7. Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019:3702518. [Link] [DOI:10.1155/2019/3702518]
8. Sazgarnia A, Bahreyni Toossi MH, Haji Ghahremani F, Rajabi O, Aledavood SA, Esmaily HO. Hyperthermia effects in the presence of gold nanoparticles together with chemotherapy on Saos-2 Cell Line. Iran J Med Phys. 2011;8(1):19-29. [Persian] [Link]
9. Mongelli A, Gaetano C, Farsetti A, Martelli F. The dark that matters: Long non-coding RNAs as master regulators of cellular metabolism in non-communicable diseases. Front Physiol. 2019;10:369. [Link] [DOI:10.3389/fphys.2019.00369]
10. Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: A new frontier of translational research?. Oncogene. 2012;31(43):4577-87. [Link] [DOI:10.1038/onc.2011.621]
11. DeOcesano-Pereira C, Amaral MS, Parreira KS, Ayupe AC, Jacysyn JF, Amarante-Mendes GP, et al. Long non-coding RNA INXS is a critical mediator of BCL-XS induced apoptosis. Nucleic Acids Res. 2014;42(13):8343-55. [Link] [DOI:10.1093/nar/gku561]
12. Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer. Int J Mol Sci. 2018;19(10):3264. [Link] [DOI:10.3390/ijms19103264]
13. Correia A, Silva D, Correia A, Vilanova M, Gärtner F, Vale N. Study of new therapeutic strategies to combat breast cancer using drug combinations. Biomolecules. 2018;8(4):175. [Link] [DOI:10.3390/biom8040175]
14. Mokhtari MJ, Koohpeima F, Mohammadi H. A comparison inhibitory effects of cisplatin and MNPs‐PEG‐cisplatin on the adhesion capacity of bone metastatic breast cancer. Chem Biol Drug Des. 2017;90(4):618-28. [Link] [DOI:10.1111/cbdd.12985]
15. Mahboudi H, Heidari NM, Rashidabadi ZI, Anbarestani AH, Karimi S, Darestani KD. Prospect and competence of quantitative methods via real-time PCR in a comparative manner: An experimental review of current methods. Open Bioinform J. 2018;11(1):1-11. [Link] [DOI:10.2174/1875036201811010001]
16. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm. 2005;2(3):194-205. [Link] [DOI:10.1021/mp0500014]
17. Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, et al. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomed. 2017;12:1621-37. [Link] [DOI:10.2147/IJN.S124403]
18. Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci. 2012;125(2):462-72. [Link] [DOI:10.1093/toxsci/kfr319]
19. Pandurangan M, Veerappan M, Kim DH. Cytotoxicity of zinc oxide nanoparticles on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. Appl Biochem Biotechnol. 2015;175(3):1270-80. [Link] [DOI:10.1007/s12010-014-1351-y]
20. Hekmat A, Saboury AA, Divsalar A. The effects of silver nanoparticles and doxorubicin combination on DNA structure and its antiproliferative effect against T47D and MCF7 cell lines. J Biomed Nanotechnol. 2012;8(6):968-82. [Link] [DOI:10.1166/jbn.2012.1451]
21. Yuan YG, Wang YH, Xing HH, Gurunathan S. Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: A suitable alternative nanotherapy for neuroblastoma. Int J Nanomed. 2017;12:5819-39. [Link] [DOI:10.2147/IJN.S140605]
22. Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, Moscato P, et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 2012;22(5):885-98. [Link] [DOI:10.1101/gr.131037.111]
23. Florou D, Patsis Ch, Ardavanis A, Scorilas A. Effect of doxorubicin, oxaliplatin, and methotrexate administration on the transcriptional activity of BCL-2 family gene members in stomach cancer cells. Cancer Biol Ther. 2013;14(7):587-96. [Link] [DOI:10.4161/cbt.24591]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author