Volume 23, Issue 2 (2020)                   mjms 2020, 23(2): 57-65 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasanshahi Z, Dehghani B, Hashempour T. Bioinformatics Study of HIV-1 Integrase Gene Sequences in Iranian Patients. mjms 2020; 23 (2) :57-65
URL: http://mjms.modares.ac.ir/article-30-39310-en.html
1- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
2- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran , thashem@sums.ac.ir
Abstract:   (2675 Views)
Aims: Many inhibitors have been introduced for the treatment of HIV-1 infections; however, most of these efforts have been failed due to the presence of resistant strains. The purpose of the current study was to investigate the treatment-resistance mutations in the HIV virus integrase gene and the effect of these mutations on the structure, function, and physical and chemical properties of this enzyme using bioinformatics software.
Materials & Methods: 36 HIV-1 integrase sequences form Iranian patients were obtained from the NCBI Genbank. After determining the mutations compared to the reference sequence, its post-modification and physical and chemical properties were described. Sequences subtypes, as well as the second and third structures, and possible interactions of this enzyme with the main inhibitors of the integrase were examined.
Findings: The analysis of selected sequences indicated a number of mutations in this protein. The subtype of most of the samples was A1 and the results of the analysis of the interaction showed that the mutations in the samples had no significant effect on the interaction of inhibitors with the integrase enzyme.
Conclusion: The binding site of these inhibitors is often found in the catalytic domain of integrase enzyme, and the results of this study depicted that most mutations were located outside this region, and this may be the main reason for the failure of these mutations to affect the interaction of inhibitors and integrase enzyme. Generally, the findings of this study suggest that anti-HIV inhibitors of HIV-1 can be used as an effective way to control this disease for Iranian patients.
Full-Text [PDF 529 kb]   (1758 Downloads)    
Article Type: Original Research | Subject: Molecular Biology
Received: 2019/12/25 | Accepted: 2020/06/10

References
1. Brik A, Wong CH. HIV-1 protease: Mechanism and drug discovery. Org Biomol Chem. 2003;1(1):5-14. [Link] [DOI:10.1039/b208248a]
2. Dehghani B, Dehghani A, Sarvari J. Knowledge and awareness regarding hepatitis B, hepatitis C, and human immunodeficiency viruses among college students: A report from Iran. International Q Community Health Educ. 2019:0272684X19896727. [Link] [DOI:10.1177/0272684X19896727]
3. Dehghani A, Dehghani P, Dehghani B. HIV/AIDS knowledge and attitude among high school students in Shiraz, Iran in 2015. J Midwifery Reprod Health. 2017;5(2):897-903. [Link]
4. Dehghani B, Hasanshahi Z, Hashempour T, Parvin Afsar K. Subtype classification by polymerase and gag genes of HIV-1 Iranian sequences registered in the NCBI GenBank. Curr Proteom. 2020;17:1-9. [Link] [DOI:10.2174/1570164617999200510233018]
5. World Health Organization. HIV assays: Operational characteristics (Phase 1). Report 15, Antigen/antibody ELISAs. Geneva: WHO; 2004. [Link]
6. Dayer MR, Dayer MS. Whiskers-less HIV-protease: a possible Way for HIV-1 deactivation. J Biomed Sci. 2013;20(1):67. [Link] [DOI:10.1186/1423-0127-20-67]
7. Yoder KE, Bushman FD. Repair of gaps in retroviral DNA integration intermediates. J Virol. 2000;74(23):11191-200. [Link] [DOI:10.1128/JVI.74.23.11191-11200.2000]
8. Craigie R. HIV integrase, a brief overview from chemistry to therapeutics. J Biol Chem. 2001;276(26):23213-6. [Link] [DOI:10.1074/jbc.R100027200]
9. Jenkins TM, Esposito D, Engelman A, Craigie R. Critical contacts between HIV‐1 integrase and viral DNA identified by structure‐based analysis and photo‐crosslinking. EMBO J. 1997;16(22):6849-59. [Link] [DOI:10.1093/emboj/16.22.6849]
10. Esposito D, Craigie R. Sequence specificity of viral end DNA binding by HIV‐1 integrase reveals critical regions for protein-DNA interaction. EMBO J. 1998;17(19):5832-43. [Link] [DOI:10.1093/emboj/17.19.5832]
11. Hashempour T, Dehghani B, Mousavi Z, Akbari T. Association of mutations in the NS5A-PKRBD region and IFNL4 genotypes with hepatitis c interferon responsiveness and its functional and structural analysis. Curr Proteom. 2020;17:1-12. [Link] [DOI:10.2174/1570164617666200107091124]
12. Dehghani B, Hasanshahi Z, Hashempour T. HIV capsid and protease, new targets of melittin. Int J Pept Res Ther. 2020:1-9. [Link] [DOI:10.1007/s10989-019-10002-9]
13. Dehghani B, Hasanshahi Z, Hashempour T, Motamedifar M. The possible regions to design Human Papilloma Viruses vaccine in Iranian L1 protein. Biologia. 2020;75(5):749-59. [Link] [DOI:10.2478/s11756-019-00386-w]
14. Hashempour T, Dehghani B, Mousavi Z, Yahaghi M, Hasanshahi Z, Moayedi J, et al. Evaluating drug resistant mutations to HCV NS3 protease inhibitors in iranian Naïve patients. Int J Pept Res Ther. 2019:1-12. [Link] [DOI:10.1007/s10989-019-09957-6]
15. Musavi Z, Hashempour T, Moayedi J, Dehghani B, Ghassabi F, Hallaji M, et al. Antibody development to HCV alternate reading frame protein in liver transplant candidate and its computational analysis. Curr Proteom. 2020;17(2):154-70. [Link] [DOI:10.2174/1570164617666190822103329]
16. Moattari A, Dehghani B, Khodadad N, Tavakoli F. In silico functional and structural characterization of H1N1 influenza a viruses hemagglutinin, 2010-2013, Shiraz, Iran. Acta Biotheor. 2015;63(2):183-202. [Link] [DOI:10.1007/s10441-015-9260-1]
17. Jahanbakhsh F, Ibe S, Hattori J, Monavari SH, Matsuda M, Maejima M, et al. Molecular epidemiology of HIV type 1 infection in Iran: genomic evidence of CRF35-AD predominance and CRF01-AE infection among individuals associated with injection drug use. AIDS research and human retroviruses. 2013;29(1):198-203. [Link] [DOI:10.1089/aid.2012.0186]
18. Dehghani B, Hashempour T, Hasanshahi Z. Interaction of human herpesvirus 8 viral interleukin-6 with human interleukin-6 receptor using in silico approach: The potential role in HHV-8 pathogenesis. Curr Proteom. 2020;17(2):107-16. [Link] [DOI:10.2174/1570164616666190626151949]
19. Dehghani B, Hashempour T, Hasanshahi Z, Moayedi J. Bioinformatics analysis of domain 1 of HCV-core protein: Iran. Int J Pept Res Ther. 2020;26(1):303-20. [Link] [DOI:10.1007/s10989-019-09838-y]
20. Dehghani B, Hashempour T, Hasanshahi Z. Using immunoinformatics and structural approaches to design a novel HHV8 vaccine. Int J Pept Res Ther. 2020;26(1):321-31. [Link] [DOI:10.1007/s10989-019-09839-x]
21. expasy.org [Internet]. Lausanne: Swiss Institute of Bioinformatics; 2005 [cited 2019 July 10]. Available from: http://expasy.org/ tools/protparam.html [Link]
22. dabi.temple.edu/disphos/pred.html [Internet]. San Diego: University of California San Diego; 2004 [cited 2019 July 12]. Available from: http://www.dabi.temple.edu/disphos/pred.html [Link]
23. http://www.cbs.dtu.dk/services/NetPhos/ [Internet]. Lyngby: DTU Health TechDTU; 2017 [cited 2019 July 21]. Available from: http://www.cbs.dtu.dk/services/NetPhos/ [Link]
24. imtech.res.in/raghava/glycoep/ [Internet]. Chandigarh: Institute of Microbial Technology; 2013 [cited 2019 July 25]. Available from: http://www.imtech.res.in/raghava/glycoep/ [Link]
25. cbs.dtu.dk/services/NetNGlyc/ [Internet]. Lyngby: DTU Health TechDTU; 2017 [cited 2019 August 1]. Available from: http://www.cbs.dtu.dk/services/NetNGlyc/ [Link]
26. clavius.bc.edu/~clotelab/DiANNA/ [Internet]. Newton: Boston College; 2006 [cited 2019 August 5]. Available from: http://clavius.bc.edu/~clotelab/DiANNA/ [Link]
27. Dehghani B, Ghasabi F, Hashempoor T, Joulaei H, Hasanshahi Z, Halaji M, et al. Functional and structural characterization of Ebola virus glycoprotein (1976-2015)-An in silico study. Int J Biomath. 2017;10(08):1750108. [Link] [DOI:10.1142/S179352451750108X]
28. Prabi-Gerland Rhone-Alpes Bioinformatic Pole Gerland Site. SOPMA [Software]. 2016 [cited 2019 August 11]. Available from: https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html [Link]
29. zhanglab. I-TASSER [Software]. 2010 [cited 2019 August 20]. Available from: http://zhanglab.ccmb.med.umich.edu/I-TASSER [Link]
30. zhanglab. TM-align [Software]. 2005 [cited 2019 August 23]. Available from: https://zhanglab.ccmb.med.umich.edu/TM-align/ [Link]
31. hivdb.stanford.edu/hivdb/by-sequences/ [Internet]. Stanford: Stanford University; 2020 [cited 2019 September 1]. Available from: https://hivdb.stanford.edu/hivdb/by-sequences/ [Link]
32. Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, et al. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol. 2008;82(2):764-74. [Link] [DOI:10.1128/JVI.01534-07]
33. Saladini F, Giannini A, Boccuto A, Tiezzi D, Vicenti I, Zazzi M. The HIV-1 integrase E157Q polymorphism per se does not alter susceptibility to raltegravir and dolutegravir in vitro. AIDS. 2017;31(16):2307-9. [Link] [DOI:10.1097/QAD.0000000000001616]
34. Engelman A, Cherepanov P. Retroviral integrase structure and DNA recombination mechanism. Microbiol Spectr. 2014;2(6):1-22. [Link] [DOI:10.1128/microbiolspec.MDNA3-0024-2014]
35. Chiu TK, Davies DR. Structure and function of HIV-1 integrase. Curr Top Med Chem. 2004;4(9):965-77. [Link] [DOI:10.2174/1568026043388547]
36. Masuda T. Non-enzymatic functions of retroviral integrase: The next target for novel anti-HIV drug development. Front Microbiol. 2011;2:210. [Link] [DOI:10.3389/fmicb.2011.00210]
37. Grawenhoff J, Engelman AN. Retroviral integrase protein and intasome nucleoprotein complex structures. World J Biol Chem. 2017;8(1):32-44. [Link] [DOI:10.4331/wjbc.v8.i1.32]
38. Baesi K, Moallemi S, Farrokhi M, Alinaghi SA, Truong HH. Subtype classification of Iranian HIV-1 sequences registered in the HIV databases, 2006-2013. PloS One. 2014;9(9):e105098. [Link] [DOI:10.1371/journal.pone.0105098]
39. Hamkar R, Mohraz M, Lorestani Sh, Aghakhani A, Truong HH, McFarland W, et al. Assessing subtype and drug-resistance-associated mutations among antiretroviral-treated HIV-infected patients. AIDS. 2010;24:S85-91. [Link] [DOI:10.1097/01.aids.0000386738.32919.67]
40. Wan M, Loh BN. Expression and purification of active form of HIV-1 protease from E. coli. Biochem Mol Biol Int. 1995;35(4):899-912. [Link]
41. Rikhtegaran Tehrani Z, Azadmanesh K, Mostafavi E, Azizi M, Khabiri A. Cloning, expression and purification of HIV integrase and evaluation of its antigenicity. RAZI J Med Sci. 2015;22(134):59-67. [Persian] [Link]
42. Marcus-Sekura CJ, Woerner AM, Zweig M, Court DL, Levin JG, Klutch M. Expression of HIV-1 integrase in E. coli: Immunological analysis of the recombinant protein. AIDS Res Hum Retrovir. 1990;6(12):1399-408. [Link] [DOI:10.1089/aid.1990.6.1399]
43. Parissi V, Calmels Ch, De Soultrait VR, Caumont A, Fournier M, Chaignepain S, et al. Functional interactions of human immunodeficiency virus type 1 integrase with human and yeast HSP60. J Virol. 2001;75(23):11344-53. [Link] [DOI:10.1128/JVI.75.23.11344-11353.2001]
44. Desfarges S, San Filippo J, Fournier M, Calmels C, Caumont-Sarcos A, Litvak S, et al. Chromosomal integration of LTR-flanked DNA in yeast expressing HIV-1 integrase: Down regulation by RAD51. Nucleic Acids Res. 2006;34(21):6215-24. [Link] [DOI:10.1093/nar/gkl843]
45. Caumont AB, Jamieson GA, Pichuantes S, Nguyen AT, Litvak S, Dupont CH. Expression of functional HIV-1 integrase in the yeast Saccharomyces cerevisiae leads to the emergence of a lethal phenotype: Potential use for inhibitor screening. Curr Genet. 1996;29(6):503-10. [Link] [DOI:10.1007/BF02426953]
46. Van Griensven J, Zhan X, Van Maele B, Pluymers W, Michiels M, De Clercq E, et al. Expression of HIV‐1 integrase in CEM cells inhibits HIV‐1 replication. J Gene Med. 2004;6(3):268-77. [Link] [DOI:10.1002/jgm.520]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.