Volume 23, Issue 3 (2020)                   mjms 2020, 23(3): 121-128 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moghadas H. A Microfluidic Device to Apply Uniform Shear Stress to the Cells. mjms. 2020; 23 (3) :121-128
URL: http://mjms.modares.ac.ir/article-30-40128-en.html
Department of Mechanical Engineering, Faculty of Gas and Petroleum, Yasouj University, Gachsaran, Iran , h.moghadas@yu.ac.ir
Abstract:   (1381 Views)
The invention of microfluidic devices has led to a dramatic change in engineering, medicine, and biomedicine. Microfluidic devices provide the conditions for cell culture in real body dimensions. In the present study, a microfluidic chip was fabricated that is capable of keeping cells alive under dynamic flow conditions. This microchip consists of a microchannel in which cells are cultured. Different amounts of shear stress are exerted to the cells by passing culture media. The results of the flow field simulation show that in the flow rate of 1 to 100 microliters per minute, the shear stress distribution is uniform. In this range of flow rate, shear stress varies from 0.005434 to 0.5432dyn/cm2, which is within the allowable shear stress for cells. Large shear stresses, such as a flow rate of 1000 microliters per minute, cause the cell wall to rupture, and eventually disintegration. The experimental results confirm that the growth and proliferation of cells vary for different amounts of growth factor as a chemical factor. The cells filled the microchannel for a growth factor of 15% on the fifth day of culture, while without growth factor, the microchannel was filled on the seventh day. The results indicate that this microchip can maintain cells alive for more than a week. Also, by adjusting the flow, different amounts of shear stress can be applied to the cells. Therefore, this microchip can perform various cellular tests to investigate the effect of shear stress on the cells.
Full-Text [PDF 1073 kb]   (460 Downloads)    
Article Type: Original Research | Subject: Tissue Engineering
Received: 2020/01/24 | Accepted: 2020/08/2

1. Santana HS, Silva JL, Aghel B, Ortega-Casanova J. Review on microfluidic device applications for fluids separation and water treatment processes. SN Appl Sci. 2020;2(3):395. [Link] [DOI:10.1007/s42452-020-2176-7]
2. Cui P, Wang S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J Pharm Anal. 2019;9(4):238-47. [Link] [DOI:10.1016/j.jpha.2018.12.001]
3. Jang KJ, Cho HS, Kang DH, Bae WG, Kwon TH, Suh KY. Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integr Biol. 2011;3(2):134-41. [Link] [DOI:10.1039/C0IB00018C]
4. Yao J, Zhu G, Zhao T, Takei M. Microfluidic device embedding electrodes for dielectrophoretic manipulation of cells‐A review. Electrophoresis. 2019;40(8):1166-77. [Link] [DOI:10.1002/elps.201800440]
5. Giridharan V, Yun Y, Hajdu P, Conforti L, Collins B, Jang Y, et al. Microfluidic platforms for evaluation of nanobiomaterials: A review. J Nanomater. 2012;2012:789841. [Link] [DOI:10.1155/2012/789841]
6. Mina SG, Wang W, Cao Q, Huang P, Murray BT, Mahler GJ. Shear stress magnitude and transforming growth factor-βeta 1 regulate endothelial to mesenchymal transformation in a three-dimensional culture microfluidic device. RSC Adv. 2016;6(88):85457-67. [Link] [DOI:10.1039/C6RA16607E]
7. Feng Sh, Mao S, Zhang Q, Li W, Lin JM. Online analysis of drug toxicity to cells with shear stress on an integrated microfluidic chip. ACS Sens. 2019;4(2):521-7. [Link] [DOI:10.1021/acssensors.8b01696]
8. Kim TH, Lee JM, Ahrberg CD, Chung BG. Development of the microfluidic device to regulate shear stress gradients. BioChip J. 2018;12(4):294-303. [Link] [DOI:10.1007/s13206-018-2407-9]
9. Ma C, Geng B, Zhang X, Li R, Yang X, Xia Y. Fluid shear stress suppresses osteoclast differentiation in RAW264. 7 cells through extracellular signal-regulated kinase 5 (ERK5) signaling pathway. Med Sci Monit. 2020;26:e918370-1-9. [Link] [DOI:10.12659/MSM.918370]
10. Zhang J, Wei X, Zeng R, Xu F, Li X. Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Future Sci OA. 2017;3(2):FSO187. [Link] [DOI:10.4155/fsoa-2016-0091]
11. Chikamori M, Kimura H, Inagi R, Zhou J, Nangaku M, Fujii T. Intracellular calcium response of primary cilia of tubular cells to modulated shear stress under oxidative stress. Biomicrofluidics. 2020;14(4):044102. [Link] [DOI:10.1063/5.0010737]
12. Schneider I, Baumgartner W, Gröninger O, Stark WJ, Märsmann S, Calcagni M, et al. 3D microtissue-derived human stem cells seeded on electrospun nanocomposites under shear stress: Modulation of gene expression. J Mech Behav Biomed Mater. 2020;102:103481. [Link] [DOI:10.1016/j.jmbbm.2019.103481]
13. Chen ZZ, Yuan WM, Xiang Ch, Zeng DP, Liu B, Qin KR. A microfluidic device with spatiotemporal wall shear stress and ATP signals to investigate the intracellular calcium dynamics in vascular endothelial cells. Biomech Model Mechanobiol. 2019;18(1):189-202. [Link] [DOI:10.1007/s10237-018-1076-x]
14. Zhang B, Xie F, Shao Sh, Aziz A, Li W, Deng Sh, et al. Heat shock protein 27 phosphorylation regulates tumor cell migration under shear stress. Biomolecules. 2019;9(2):50. [Link] [DOI:10.3390/biom9020050]
15. Moghadas H, Saidi MS, Kashaninejad N, Nguyen NT. Challenge in particle delivery to cells in a microfluidic device. Drug Deliv Transl Res. 2018;8(3):830-42. [Link] [DOI:10.1007/s13346-017-0467-3]
16. Delon LC, Guo Z, Kashani MN, Yang CT, Prestidge C, Thierry B. Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips. MethodsX. 2020;7:100980. [Link] [DOI:10.1016/j.mex.2020.100980]
17. Lin JY, Lo KY, Sun YS. A microfluidics-based wound-healing assay for studying the effects of shear stresses, wound widths, and chemicals on the wound-healing process. Sci Rep. 2019;9(1):20016. [Link] [DOI:10.1038/s41598-019-56753-9]
18. Yan Z, Su G, Gao W, He J, Shen Y, Zeng Y, et al. Fluid shear stress induces cell migration and invasion via activating autophagy in HepG2 cells. Cell Adhes Migr. 2019;13(1):152-63. [Link] [DOI:10.1080/19336918.2019.1568141]
19. Moshksayan K, Kashaninejad N, Warkiani ME, Lock JG, Moghadas H, Firoozabadi B, et al. Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sens Actuators B Chem. 2018;263:151-76. [Link] [DOI:10.1016/j.snb.2018.01.223]
20. Chao PG, Tang Z, Angelini E, West AC, Costa KD, Hung CT. Dynamic osmotic loading of chondrocytes using a novel microfluidic device. J Biomech. 2005;38(6):1273-81. [Link] [DOI:10.1016/j.jbiomech.2004.06.016]
21. Bao X, Li Z, Liu H, Feng K, Yin F, Li H, et al. Stimulation of chondrocytes and chondroinduced mesenchymal stem cells by osteoinduced mesenchymal stem cells under a fluid flow stimulus on an integrated microfluidic device. Mol Med Rep. 2018;17(2):2277-88. [Link] [DOI:10.3892/mmr.2017.8153]
22. Angelozzi M, Penolazzi L, Mazzitelli S, Lambertini E, Lolli A, Piva R, et al. Dedifferentiated chondrocytes in composite microfibers as tool for cartilage repair. Front Bioeng Biotechnol. 2017;5:35. [Link] [DOI:10.3389/fbioe.2017.00035]
23. Kowsari-Esfahan R, Jahanbakhsh A, Saidi MS, Bonakdar Sh. A microfabricated platform for the study of chondrogenesis under different compressive loads. J Mech Behav Biomed Mater. 2018;78:404-13. [Link] [DOI:10.1016/j.jmbbm.2017.12.002]
24. Kim M, Erickson IE, Choudhury M, Pleshko N, Mauck RL. Transient exposure to TGF-β3 improves the functional chondrogenesis of MSC-laden hyaluronic acid hydrogels. J Mech Behav Biomed Mater. 2012;11:92-101. [Link] [DOI:10.1016/j.jmbbm.2012.03.006]
25. Terraciano V, Hwang N, Moroni L, Park HB, Zhang Z, Mizrahi J, et al. Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells. 2007;25(11):2730-8. [Link] [DOI:10.1634/stemcells.2007-0228]
26. Bonzani IC, Campbell JJ, Knight MM, Williams A, Lee DA, Bader DL, et al. Dynamic compressive strain influences chondrogenic gene expression in human periosteal cells: A case study. J Mech Behav Biomed Mater. 2012;11:72-81. [Link] [DOI:10.1016/j.jmbbm.2011.06.015]
27. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483-95. [Link] [DOI:10.1016/S1534-5807(04)00075-9]
28. Wang H, Riha GM, Yan S, Li M, Chai H, Yang H, et al. Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler Thromb Vasc Biol. 2005;25(9):1817-23. [Link] [DOI:10.1161/01.ATV.0000175840.90510.a8]
29. Sun J, Luo Q, Liu L, Song G. Low-level shear stress induces differentiation of liver cancer stem cells via the Wnt/β-catenin signalling pathway. Exp Cell Res. 2019;375(1):90-6. [Link] [DOI:10.1016/j.yexcr.2018.12.023]
30. Yue D, Zhang M, Lu J, Zhou J, Bai Y, Pan J. The rate of fluid shear stress is a potent regulator for the differentiation of mesenchymal stem cells. J Cell Physiol. 2019;234(9):16312-9. [Link] [DOI:10.1002/jcp.28296]
31. Huang S, Chen CS, Ingber DE. Control of cyclin D1, p27Kip1, and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol Biol Cell. 1998;9(11):3179-93. [Link] [DOI:10.1091/mbc.9.11.3179]
32. Young EW, Wheeler AR, Simmons CA. Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels. Lab Chip. 2007;7(12):1759-66. [Link] [DOI:10.1039/b712486d]
33. Liu L, Jiang H, Zhao W, Meng Y, Li J, Huang T, et al. Cdc42-mediated supracellular cytoskeleton induced cancer cell migration under low shear stress. Biochem Biophys Res Commun. 2019;519(1):134-40. [Link] [DOI:10.1016/j.bbrc.2019.08.149]
34. Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF‐β pathway. J Cell Mol Med. 2010;14(6a):1338-46. [Link] [DOI:10.1111/j.1582-4934.2009.00780.x]
35. Ferrell N, Desai RR, Fleischman AJ, Roy S, Humes HD, Fissell WH. A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells. Biotechnol Bioeng. 2010;107(4):707-16. [Link] [DOI:10.1002/bit.22835]
36. Chen H, Yu Z, Bai S, Lu H, Xu D, Chen C, et al. Microfluidic models of physiological or pathological flow shear stress for cell biology, disease modeling and drug development. TrAC Trends Anal Chem. 2019;117:186-99. [Link] [DOI:10.1016/j.trac.2019.06.023]
37. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21(12):745-54. [Link] [DOI:10.1016/j.tcb.2011.09.005]
38. Raimondi MT, Boschetti FE, Falcone L, Fiore GB, Remuzzi A, Marinoni E, et al. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Biomech Model Mechanobiol. 2002;1(1):69-82. [Link] [DOI:10.1007/s10237-002-0007-y]
39. Jang KJ, Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip. 2010;10(1):36-42. [Link] [DOI:10.1039/B907515A]
40. Oo ZY, Deng R, Hu M, Ni M, Kandasamy K, Bin Ibrahim MS, et al. The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys. Biomaterials. 2011;32(34):8806-15. [Link] [DOI:10.1016/j.biomaterials.2011.08.030]
41. Ferrell N, Ricci KB, Groszek J, Marmerstein JT, Fissell WH. Albumin handling by renal tubular epithelial cells in a microfluidic bioreactor. Biotechnol Bioeng. 2012;109(3):797-803. [Link] [DOI:10.1002/bit.24339]
42. Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE. Microengineered physiological biomimicry: Organs-on-chips. Lab Chip. 2012;12(12):2156-64. [Link] [DOI:10.1039/c2lc40089h]
43. Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh KY, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol. 2013;5(9):1119-29. [Link] [DOI:10.1039/c3ib40049b]

Send email to the article author