Volume 22, Issue 2 (2019)                   mjms 2019, 22(2): 69-75 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini Z, Amani J, Hosseini F. Expression of the Recombinant Protein Containing CfaB, ST, CfaE, and LtB from Enterotoxigenic Escherichia coli and Loading It in Chitosan Nanoparticles. mjms 2019; 22 (2) :69-75
URL: http://mjms.modares.ac.ir/article-30-22664-en.html
1- Cell & Molecular Biology-Biotechnology Department, Biological Sciences Faculty, Tehran North Branch, Islamic Azad University, Tehran, Iran
2- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran , jafar.amani@gmail.com
Abstract:   (7095 Views)
Aims: Enterotoxigenic Escherichia coli (ETEC) is the most important bacteria causing traveler’s diarrhea. The bacterium has several virulence factors, including colonization factors (CFs) or Escherichia coli adhesins, heat-labile (LT), and heat-stable (ST) toxins. The design and production of vaccine against this disease is one of the goals of the World Health Organization due to increased antibiotic resistance and a reduction of healthy water sources. An effective subunit vaccine against ETEC could include a toxoid from both toxins and colonization factors. The aim of the current study was to express, purify, and encapsulate the recombinant protein in chitosan nanoparticles.
Materials and Methods: In the present experimental study, the E. coli BL21DE3 harbring pET-28a-cscl vector was used. The chimeric cscl gene is composed of cfab along with st toxin, cfae, and ltb. After the expression and purification of recombinant protein, using Ni-NTA column, Western blotting was performed with anti-His antibody. Then, the CSCl protein was encapsulated in chitosan nanoparticles and the particle size was measured.
Findings: The recombinant CSCL protein was purified by Ni-NTA column and urea denaturation method. Then, this purified protein (~57kDa) was confirmed by Western blotting and the size of the nanoparticles was estimated as 112.0 nm with 98.8% of encapsulation efficiency.
Conclusion: With some advantages, including the presence of surface and important antigens of ETEC and encapsulating in chitosan nanoparticles, the CSCL recombinant protein can be considered as a candidate for producing oral nanovaccine and stimulating of mucosal and systemic immune response.
Full-Text [PDF 648 kb]   (2039 Downloads)    
Article Type: Original Research | Subject: Biotechnology
Received: 2018/07/2 | Accepted: 2019/02/4

References
1. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev. 2013;26(4):822-80. [Link] [DOI:10.1128/CMR.00022-13]
2. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet. 2012;379(9832):2151-61. [Link] [DOI:10.1016/S0140-6736(12)60560-1]
3. Walker RI, Steele D, Aguado T, Committee AHETE. Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic E. coli (ETEC) disease. Vaccine. 2007;25(14):2545-66. [Link] [DOI:10.1016/j.vaccine.2006.12.028]
4. Begum YA, Rydberg HA, Thorell K, Kwak YK, Sun L, Joffré E, et al. In Situ Analyses Directly in Diarrheal Stool Reveal Large Variations in Bacterial Load and Active Toxin Expression of Enterotoxigenic Escherichia coli and Vibrio cholerae. mSphere. 2018;3(1):e00517-17. [Link] [DOI:10.1128/mSphere.00517-17]
5. Von Mentzer A, Connor TR, Wieler LH, Semmler T, Iguchi A, Thomson NR, et al. Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution. Nature genetics. 2014;46(12):1321-6. [Link] [DOI:10.1038/ng.3145]
6. Dubreuil JD, Isaacson RE, Schifferli DM. ANIMAL ENTEROTOXIGENIC ESCHERICHIA COLI. EcoSal Plus. 2016;7(1). [Link] [DOI:10.1128/ecosalplus.ESP-0006-2016]
7. Hayat SMG, Gargari SLM, Nazarian SH, Mogarmon HM. Molecular Characterization of Virulence Factors in Enterotoxigenic Escherichia coli. J Appl Biotechnol Rep. 2015;2(2):225-9. [Link]
8. Khalesi R, Nazarian Sh N, Ehsaei Z, Mansouri M, Amani J, Salimian J, et al. Optimization of gene expression and purification of enterotoxigenic Escherichia coli recombinant LTB protein and antibody production against it. Kowsar Med J. 2010;15(3):141-7. [Persian] [Link]
9. Taxt A, Aasland R, Sommerfelt H, Nataro J, Puntervoll P. Heat-stable enterotoxin of enterotoxigenic Escherichia coli as a vaccine target. Infect Immun. 2010;78(5):1824-31. [Link] [DOI:10.1128/IAI.01397-09]
10. Deng G, Zeng J, Jian M, Liu W, Zhang Z, Liu X, et al. Nanoparticulated heat-stable (STa) and heat-labile B subunit (LTB) recombinant toxin improves vaccine protection against enterotoxigenic Escherichia coli challenge in mouse. J Biosci Bioeng. 2013;115(2):147-53. [Link] [DOI:10.1016/j.jbiosc.2012.09.009]
11. Lundgren A, Leach S, Tobias J, Carlin N, Gustafsson B, Jertborn M, et al. Clinical trial to evaluate safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli prototype vaccine containing CFA/I overexpressing bacteria and recombinantly produced LTB/CTB hybrid protein. Vaccine. 2013;31(8):1163-70. [Link] [DOI:10.1016/j.vaccine.2012.12.063]
12. Svennerholm AM. From cholera to enterotoxigenic Escherichia coli (ETEC) vaccine development. The Indian J Med Res. 2011;133(2):188-96. [Link]
13. Li YF, Poole S, Rasulova F, McVeigh AL, Savarino SJ, Xia D. A receptor-binding site as revealed by the crystal structure of CfaE, the colonization factor antigen I fimbrial adhesin of enterotoxigenic Escherichia coli. J Biol Chem. 2007;282(33):23970-80. [Link] [DOI:10.1074/jbc.M700921200]
14. Hayat SMG, Gargari SLM, Nazarian S. Construction and immunogenic properties of a chimeric protein comprising CfaE, CfaB and LTB against Enterotoxigenic Escherichia coli. Biologicals. 2016;44(6):503-10. [Link] [DOI:10.1016/j.biologicals.2016.09.003]
15. Ramirez JEV, Sharpe LA, Peppas NA. Current state and challenges in developing oral vaccines. Adv Drug Deliv Rev. 2017;114:116-31. [Link] [DOI:10.1016/j.addr.2017.04.008]
16. Wang YQ, Liu Y, Wang Y-X, Wu YJ, Jia P-Y, Shan JJ, et al. The potential adjuvanticity of quaternized chitosan hydrogel based microparticles for porcine reproductive and respiratory syndrome virus inactivated vaccine. Int Immunopharmacol. 2016;39:84-91. [Link] [DOI:10.1016/j.intimp.2016.07.012]
17. Bagheri S, Gargari SLM, Rasooli I, Nazarian S, Alerasol M. A CssA, CssB and LTB chimeric protein induces protection against Enterotoxigenic Escherichia coli. Braz J Infec Dis. 2014;18(3):308-14. [Link] [DOI:10.1016/j.bjid.2013.07.012]
18. Carroll EC, Jin L, Mori A, Muñoz-Wolf N, Oleszycka E, Moran HB, et al. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons. Immunity. 2016;44(3):597-608. [Link] [DOI:10.1016/j.immuni.2016.02.004]
19. des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116(1):1-27. [Link] [DOI:10.1016/j.jconrel.2006.08.013]
20. Kim SK. Chitin and chitosan derivatives: advances in drug discovery and developments. Boca Raton: CRC Press; 2013. [Link] [DOI:10.1201/b15636]
21. Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther. 2016;10:483-507. [Link] [DOI:10.2147/DDDT.S99651]
22. Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate research. 2004;339(16):2693-700. [Link] [DOI:10.1016/j.carres.2004.09.007]
23. Hajizade A, Ebrahimi F, Salmanian A-H, Arpanae A, Amani J. Nanoparticles in vaccine development. J Appl Biotechnol Rep. 2014;1(4):125-34. [Link]
24. Bollag DM, Rozycki MD, Edelstein SJ. Protein methods. 2nd Edition. New York: Wiley-Liss; 1996. [Link]
25. Zhao K, Zhang Y, Zhang X, Li W, Shi C, Guo C, et al. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles. Int J Nanomedicine. 2014;9:389-402. [Link] [DOI:10.2147/IJN.S54226]
26. Sahl JW, Sistrunk JR, Baby NI, Begum Y, Luo Q, Sheikh A, et al. Insights into enterotoxigenic Escherichia coli diversity in Bangladesh utilizing genomic epidemiology. Sci Rep. 2017;7(1):3402. [Link] [DOI:10.1038/s41598-017-03631-x]
27. Sears KT, Tennant SM, Reymann MK, Simon R, Konstantopoulos N, Blackwelder WC, et al. Bioactive immune components of anti-diarrheagenic enterotoxigenic Escherichia coli hyperimmune bovine colostrum products. Clin Vaccine Immunol. 2017;24(8):e00186-16. [Link] [DOI:10.1128/CVI.00186-16]
28. Jafari F, Shokrzadeh L, Hamidian M, Salmanzadeh-Ahrabi S, Zali MR. Acute diarrhea due to enteropathogenic bacteria in patients at hospitals in Tehran. Jpn J Infect Dis. 2008;61(4):269-73. [Link]
29. Qadri F, Saha A, Ahmed T, Al Tarique A, Begum YA, Svennerholm A-M. Disease burden due to enterotoxigenic Escherichia coli in the first 2 years of life in an urban community in Bangladesh. Infec Immun. 2007;75(8):3961-8. [Link] [DOI:10.1128/IAI.00459-07]
30. Ochoa TJ, Ruiz J, Molina M, Del Valle LJ, Vargas M, Gil AI, et al. High frequency of antimicrobial drug resistance of diarrheagenic Escherichia coli in infants in Peru. Am J Trop Med Hyg. 2009;81(2):296-301. [Link] [DOI:10.4269/ajtmh.2009.81.296]
31. Begum YA, Talukder K, Azmi IJ, Shahnaij M, Sheikh A, Sharmin S, et al. Resistance pattern and molecular characterization of enterotoxigenic Escherichia coli (ETEC) strains isolated in Bangladesh. PloS one. 2016;11(7):e0157415. [Link] [DOI:10.1371/journal.pone.0157415]
32. Von Baum H, Marre R. Antimicrobial resistance of Escherichia coli and therapeutic implications. Int J Med Microbiol. 2005;295(6-7):503-11. [Link] [DOI:10.1016/j.ijmm.2005.07.002]
33. Madureira AR, Pereira A, Pintado M. Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr polym. 2015;130:429-39. [Link] [DOI:10.1016/j.carbpol.2015.05.030]
34. Bourgeois AL, Wierzba TF, Walker RI. Status of vaccine research and development for enterotoxigenic Escherichia coli. Vaccine. 2016;34(26):2880-6. [Link] [DOI:10.1016/j.vaccine.2016.02.076]
35. Fleckenstein J, Sheikh A, Qadri F. Novel antigens for enterotoxigenic Escherichia coli vaccines. Expert review of vaccines. 2014;13(5):631-9. [Link] [DOI:10.1586/14760584.2014.905745]
36. Nazarian S, Gargari SLM, Rasooli I, Hasannia S, Pirooznia N. A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli. Microbiol Res. 2014;169(2-3):205-12. [Link] [DOI:10.1016/j.micres.2013.06.005]
37. Zeinalzadeh N, Salmanian AH, Ahangari G, Sadeghi M, Amani J, Bathaie SZ, et al. Design and characterization of a chimeric multiepitope construct containing CfaB, heat‐stable toxoid, CssA, CssB, and heat‐labile toxin subunit B of enterotoxigenic Escherichia coli: A bioinformatic approach. Biotechnol Appl Biochem. 2014;61(5):517-27. [Link] [DOI:10.1002/bab.1196]
38. Zhu C, Setty P, Boedeker EC. Development of live attenuated bacterial vaccines targeting Escherichia coli heat-labile and heat-stable enterotoxins. Vet Microbiol. 2017;202:72-8. [Link] [DOI:10.1016/j.vetmic.2017.04.010]
39. Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol macromol. 2014;64:353-67. [Link] [DOI:10.1016/j.ijbiomac.2013.12.017]
40. Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Del Rev. 2010;62(1):28-41. [Link] [DOI:10.1016/j.addr.2009.10.003]
41. Noroozi N, Mousavi Gargari SL, Nazarian Sh, Sarvary S, Rezaei R. Immunogenicity of enterotoxigenic Escherichia coli outer membrane vesicles encapsulated in chitosan nanoparticles. Iran J Basic Med Sc. 2018;21(3):284-91. [Link]
42. Leach S. Approaches to Enhance and Evaluate the Immunogenicity of an Oral ETEC Vaccine [Dissertation]. Gothenburg: University of Gothenburg; 2015. [Link]
43. Davitt CJ, Lavelle EC. Delivery strategies to enhance oral vaccination against enteric infections. Adv Drug Deliv Rev. 2015;91:52-69. [Link] [DOI:10.1016/j.addr.2015.03.007]
44. Hosseini ZS, Amani J, Baghbani Arani F, Nazarian S, Motamedi MJ, Shafighian F. Immunogenicity of the nanovaccine containing intimin recombinant protein in the BALB/c mice. Clin Exp Vaccine Res. 2018;7(1):51-60. [Link] [DOI:10.7774/cevr.2018.7.1.51]
45. Zhao K, Zhang Y, Zhang X, Shi C, Wang X, Wang X, et al. Chitosan-coated poly (lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. Int J Nanomedicine. 2014;9:4609-19. [Link] [DOI:10.2147/IJN.S70633]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.