Volume 23, Issue 3 (2020)                   mjms 2020, 23(3): 149-156 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hassanlou M. The Effect of Static Magnetic Field on the Rate of proIAPP Amyloid Structures Formation and the Toxicity of Amyloid Structures of Lysozyme. mjms 2020; 23 (3) :149-156
URL: http://mjms.modares.ac.ir/article-30-41374-en.html
Department of Cellular and Molecular Biology, Biology Faculty, Women’s University of Semnan (Farzanegan), Semnan, Iran , hassanlou@fgusem.ac.ir
Abstract:   (2920 Views)
Aims: Living cells have an electrical charge created by the presence of ions and free radicals. Magnetic fields interact with ions, especially ferromagnetic materials such as iron that affect living cells. A common feature of about 20 different diseases is the aggregation of proteins in the form amyloid structure. In the current study, the effect of static magnetic field (SMF) on the formation and the toxicity of amyloid structures was investigated.
Materials & Methods: CHO cells were exposed to 6mT SMF in three consecutive days, and the effect of SMF on the formation of amyloid structures in the intrinsic proteins of these cells related to the control was investigated using thioflavin T (ThT) binding assay. The formation of amyloid structures in CHO cells expressing human ProIAPP cells was analyzed by observation of proIAPP protein aggregates linked to GFP protein. The effect of SMF on the toxicity of lysozyme oligomers on CHO and Hela cells was also compared with the controls.
Findings: Exposure of CHO cells to magnetic fields does not have a significant effect on the formation of amyloid structures in the intrinsic proteins of CHO cells and the amount of these structures in CHO cells expressing proIAPP protein but can increase the toxicity of lysozyme oligomers on CHO and Hela cells.
Conclusion: The magnetic field does not have a significant effect on the formation of amyloid structures in the 6mT SMF strength, but it adds to the toxicity of these structures.
Full-Text [PDF 911 kb]   (1073 Downloads)    
Article Type: Original Research | Subject: Molecular Medicine
Received: 2020/03/18 | Accepted: 2020/08/12

References
1. Hulot G, Finlay CC, Constable CG, Olsen N, Mandea M. The magnetic field of planet earth. Space Sci Rev. 2010;152(1):159-222. [Link] [DOI:10.1007/s11214-010-9644-0]
2. Piacentini MP, Fraternale D, Piatti E, Ricci D, Vetrano F, Dachà M, et al. Senescence delay and change of antioxidant enzyme levels in Cucumis sativus L. etiolated seedlings by ELF magnetic fields. Plant Sci. 2001;161(1):45-53. [Link] [DOI:10.1016/S0168-9452(01)00380-6]
3. Leamon RJ, Smith CW, Ness NF, Matthaeus WH, Wong HK. Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J Geophys Res Space Phys. 1998;103(A3):4775-87. [Link] [DOI:10.1029/97JA03394]
4. Gye MC, Park CJ. Effect of electromagnetic field exposure on the reproductive system. Clin Exp Reprod Med. 2012;39(1):1-9. [Link] [DOI:10.5653/cerm.2012.39.1.1]
5. Smith CW. Biological effects of weak electromagnetic fields. In: Ho MW, Popp FA, Warnke U. Bioelectrodynamics and Biocommunication. Singapore: World Scientific; 1994. pp. 81-107. [Link] [DOI:10.1142/9789814503822_0003]
6. Sieroń A, Cieślar G. Application of variable magnetic fields in medicine-15 years experience. Wiadomosci Lekarskie. 2003;56(9-10):434-41. [Polish] [Link]
7. Hassan BF. SUB chronical effects of electromagnatic field exposureof adult female rats on some hormonal, biochemical and hematological parameters. Diyala J Agric Sci. 2011;3(1):47-53. [Link]
8. Volkow ND, Tomasi D, Wang GJ, Fowler JS, Telang F, Wang R, et al. Effects of low-field magnetic stimulation on brain glucose metabolism. Neuroimage. 2010;51(2):623-8. [Link] [DOI:10.1016/j.neuroimage.2010.02.015]
9. Jabbari Vesal N, Rostampour N, Abbasali Pourkabir R, Nikzad S. Investigating the effect of magnetic field on cortisol, blood sugar, triiodothyronine and thyroxin hormones in rat. Pajouhan Sci J. 2018;16(3):67-74. [Link] [DOI:10.21859/psj.16.3.67]
10. Ren Y, Chen J, Miao M, Li DK, Liang H, Wang Z, et al. Prenatal exposure to extremely low frequency magnetic field and its impact on fetal growth. Environ Health. 2019;18(1):6. [Link] [DOI:10.1186/s12940-019-0447-9]
11. Nikzad S, Mahmoudi G, Amini P, Baradaran-Ghahfarokhi M, Vahdat-Moaddab A, Sharafi SM, et al. Effects of radiofrequency radiation in the presence of gold nanoparticles for the treatment of renal cell carcinoma. J Ren Inj Prev. 2017;6(2):103-8. [Link] [DOI:10.15171/jrip.2017.20]
12. Davis S, Mirick DK, Stevens RG. Residential magnetic fields and the risk of breast cancer. Am J Epidemiol. 2002;155(5):446-54. [Link] [DOI:10.1093/aje/155.5.446]
13. Amara S, Abdelmelek H, Salem MB, Abidi R, Sakly M. Effects of static magnetic field exposure on hematological and biochemical parameters in rats. Braz Arch Biol Technol. 2006;49(6):889-95. [Link] [DOI:10.1590/S1516-89132006000700005]
14. Rajabbeigi E, Ghanati F, Abdolmaleki P, Payez A. Antioxidant capacity of parsley cells (Petroselinum crispum L.) in relation to iron-induced ferritin levels and static magnetic field. Electromagn Biol Med. 2013;32(4):430-41. [Link] [DOI:10.3109/15368378.2012.736441]
15. Shokrollahi S, Ghanati F, Sajedi RH, Sharifi M. Possible role of iron containing proteins in physiological responses of soybean to static magnetic field. J Plant Physiol. 2018;226:163-71. [Link] [DOI:10.1016/j.jplph.2018.04.018]
16. Vaxman I, Gertz M. Recent advances in the diagnosis, risk stratification, and management of systemic light-chain amyloidosis. Acta Haematol. 2019;141(2):93-106. [Link] [DOI:10.1159/000495455]
17. Picken MM. The Pathology of Amyloidosis in Classification: A Review. Acta Haematol. 2020;143(4):322-34. [Link] [DOI:10.1159/000506696]
18. Kundu D, Prerna K, Chaurasia R, Bharty MK, Dubey VK. Advances in protein misfolding, amyloidosis and its correlation with human diseases. 3 Biotech. 2020;10(5):193. [Link] [DOI:10.1007/s13205-020-2166-x]
19. Cohen OC, Wechalekar AD. Systemic amyloidosis: Moving into the spotlight. Leukemia. 2020;34(5):1215-28. [Link] [DOI:10.1038/s41375-020-0802-4]
20. Cooper GJ, Aitken JF, Zhang S. Is type 2 diabetes an amyloidosis and does it really matter (to patients)?. Diabetologia. 2010;53(6):1011-6. [Link] [DOI:10.1007/s00125-010-1715-y]
21. Bhattacharya S, Latha JN, Kumresan R, Singh Sh. Cloning and expression of human islet amyloid polypeptide in cultured cells. Biochem Biophys Res Commun. 2007;356(3):622-8. [Link] [DOI:10.1016/j.bbrc.2007.03.016]
22. Ke PC, Zhou R, Serpell LC, Riek R, Knowles TP, Lashuel HA, et al. Half a century of amyloids: Past, present and future. Chem Soc Rev. 2020;49(15):5473-509. [Link] [DOI:10.1039/C9CS00199A]
23. Buxbaum JN. The systemic amyloidoses. Curr Opin Rheumatol. 2004;16(1):67-75. [Link] [DOI:10.1097/00002281-200401000-00013]
24. Mahmood S, Palladini G, Sanchorawala V, Wechalekar A. Update on treatment of light chain amyloidosis. Haematologica. 2014;99(2):209-21. [Link] [DOI:10.3324/haematol.2013.087619]
25. Picca A, Calvani R, Coelho-Júnior HJ, Landi F, Bernabei R, Marzetti E. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants. 2020;9(8):647. [Link] [DOI:10.3390/antiox9080647]
26. Wang Z, Che PL, Du J, Ha B, Yarema KJ. Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate ZM241385. PLoS One. 2010;5(11):e13883. [Link] [DOI:10.1371/journal.pone.0013883]
27. Todorova N, Bentvelzen A, Yarovsky I. Electromagnetic field modulates aggregation propensity of amyloid peptides. J Chem Phys. 2020;152(3):035104. [Link] [DOI:10.1063/1.5126367]
28. Sinyor B, Mineo J, Ochner Ch. Alzheimer's disease, inflammation, and the role of antioxidants. J Alzheimer's Dis Rep. 2020;4(1):175-83. [Link] [DOI:10.3233/ADR-200171]
29. Bobkova N, Novikov V, Medvinskaya N, Aleksandrova I, Nesterova I, Fesenko E. Effect of weak combined static and extremely low-frequency alternating magnetic fields on spatial memory and brain amyloid-β in two animal models of Alzheimer's disease. Electromagn Biol Med. 2018;37(3):127-37. [Link] [DOI:10.1080/15368378.2018.1471700]
30. Baumketner A. Electric field as a disaggregating agent for amyloid fibrils. J Phys Chem B. 2014;118(50):14578-89. [Link] [DOI:10.1021/jp509213f]
31. Dadras A, Naghshineh A, Atarod D, Liaghi A, Riazi GH, Afrasiabi A. Static magnetic fields can diminish neuron spines through microtubule dynamicity disruption. 6th International Conference of Cognitive Science (ICCS) 2015 April 27-29, Tehran, Iran. Piscataway: IEEE; 2015. [Link] [DOI:10.1109/COGSCI.2015.7426664]
32. Merlini G, Seldin DC, Gertz MA. Amyloidosis: Pathogenesis and new therapeutic options. J Clin Oncol. 2011;29(14):1924-33. [Link] [DOI:10.1200/JCO.2010.32.2271]
33. Martino CF, Castello PR. Modulation of hydrogen peroxide production in cellular systems by low level magnetic fields. PLoS One. 2011;6(8):e22753. [Link] [DOI:10.1371/journal.pone.0022753]
34. Coballase-Urrutia E, Navarro L, Ortiz JL, Verdugo-Díaz L, Gallardo JM, Hernández ME, et al. Static magnetic fields modulate the response of different oxidative stress markers in a restraint stress model animal. Biomed Res Int. 2018;2018:3960408. [Link] [DOI:10.1155/2018/3960408]
35. Kabuto H, Yokoi I, Ogawa N, Mori A, Liburdy RP. Effects of magnetic fields on the accumulation of thiobarbituric acid reactive substances induced by iron salt and H2O2 in mouse brain homogenates or phosphotidylcholine. Pathophysiology. 2001;7(4):283-8. [Link] [DOI:10.1016/S0928-4680(00)00062-6]
36. Jajte J, Grzegorczyk J, Zmyślony M, Rajkowska E. Effect of 7 mT static magnetic field and iron ions on rat lymphocytes: Apoptosis, necrosis and free radical processes. Bioelectrochemistry. 2002;57(2):107-11. [Link] [DOI:10.1016/S1567-5394(02)00059-2]

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.